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ABSTRACT 

The study presents a methodology for combining ensemble models to forecast key parameters 

of a sea agent’s activity in service ergatic systems. It synthesizes boosting, stacking, and hybrid 

architectures with deep learning elements to handle complex nonlinear and time-series data with 

irregularities typical of port logistics. A modular prototype solution relies on comparative model 

evaluation: LightGBM, a three-component stacking ensemble (Decision Tree, Logistic Regression, 

SVM), and a Random Forest + LSTM hybrid. Optimization follows a risk-minimization criterion, with 

ensemble outputs directly informing managerial decisions. Across Accuracy, F1-score, and inverted 

MAE metrics, LightGBM outperformed alternatives by roughly 20%. The paper analyzes risks of 

operational losses due to inaccurate vessel turnaround planning and excessive berth time. Using the 

decision-support prototype and a derived risk-assessment concept, it offers recommendations for 

agents to mitigate additional berth downtime caused by delays or unpredictable congestion, thereby 

minimizing new operating expenses. Practically, the results enable a strategy of proactive risk 

reduction and resource-allocation optimization through high-precision forecasts. Theoretically, they 

demonstrate the viability of complex ensemble methods with a dominant boosting component for a 

wide range of optimal decision-support tasks in service ergatic systems under stochastic fluctuations 

in operational demand. 

 Keywords: ensemble machine learning, sea agency, decision support system, LightGBM, 

gradient boosting, operational risk, service ergatic systems, stacking generalization, predictive 

analytics, port logistics. 

АНОТАЦІЯ 

Дослідження пропонує методологію поєднання ансамблевих моделей для прогнозування 

ключових параметрів діяльності морського агента в сервісних ергатичних системах. Воно 

синтезує бустинг, стекінг і гібридні архітектури з елементами глибинного навчання для 

обробки складних нелінійних і часових даних з нерівномірностями, типовими для портової 

логістики. Модульний прототип рішення спирається на порівняльну оцінку моделей: 

LightGBM, трикомпонентний стекінг (дерево рішень, логістична регресія, SVM) та гібрид 
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Random Forest + LSTM. Оптимізація здійснюється за критерієм мінімізації ризику, причому 

виходи ансамблю безпосередньо інформують управлінські рішення. За метриками Accuracy, 

F1-score та інверсною MAE LightGBM перевершила альтернативи приблизно на 20%. У 

роботі проаналізовано ризики операційних втрат через неточне планування часу обробки 

судна та надмірний час стоянки біля причалу. Використовуючи прототип системи 

підтримки рішень і розроблену концепцію оцінювання ризиків, подано рекомендації агентам 

щодо зменшення додаткових простоїв суден, спричинених затримками або непередбачуваною 

завантаженістю, що мінімізує нові операційні витрати. Практично результати 

забезпечують стратегію проактивного зниження ризиків і оптимізації розподілу ресурсів 

завдяки високоточним прогнозам. Теоретично вони демонструють життєздатність 

складних ансамблевих методів із домінантним компонентом бустингу для широкого кола 

завдань оптимальної підтримки рішень у сервісних ергатичних системах за умов 

стохастичних коливань операційного попиту. 

Ключові слова: ансамблеве машинне навчання, морське агентування, система 

підтримки прийняття рішень, LightGBM, градієнтний бустинг, операційний ризик. 

Постановка проблеми в загальному вигляді та її зв’язок із важливими науковими 

чи практичними завданнями 

 Сучасний розвиток світового морського транспорту супроводжується зростанням 

складності організаційних, логістичних та інформаційних процесів, що відбуваються у портах 

та у сфері морського агентування. Глобалізація торговельних потоків, посилення конкуренції 

між транспортними коридорами, зростання вимог до безпеки морських перевезень і суворіша 

регламентація міжнародних стандартів створюють принципово нові умови для 

функціонування морських агентів. Вони виступають ключовими ланками у взаємодії між 

судновласниками, портовими адміністраціями, експедиторами, контролюючими органами та 

сервісними структурами. Морський агент виконує широкий спектр завдань, пов’язаних із 

координацією приходу та виходу суден, оформленням документів, організацією технічного та 

комерційного обслуговування, контролем витрат та забезпеченням інтересів клієнта. Такий 

комплекс функцій визначає його як складову сервісної ергатичної системи, де взаємодія 

людини та інформаційно-технологічних засобів набуває особливої ваги. 

Проте, з огляду на постійне зростання обсягів обробки інформації та підвищення 

динамічності процесів у морських портах, традиційні методи організації діяльності агентів 

дедалі більше демонструють обмеженість. Людський фактор залишається ключовим у 

прийнятті рішень, але саме це часто призводить до затримок, суб’єктивності оцінок та 

нераціонального використання ресурсів. За таких умов виникає потреба у створенні нових 

інструментів, що здатні забезпечити своєчасність, точність і обґрунтованість управлінських 

дій, зберігаючи при цьому баланс між автоматизацією і професійною експертизою фахівця. 

Моделювання діяльності морського агента у вигляді елемента сервісної ергатичної 

системи дозволяє не лише формалізувати його функціональні обов’язки, а й перевести 

багатокритеріальний характер його роботи у площину оптимізаційних завдань. Таке уявлення 

відкриває можливості для застосування сучасних технологій штучного інтелекту та 

машинного навчання, які здатні інтегрувати велику кількість різнорідних даних та генерувати 

прогностичні моделі для підтримки рішень у режимі реального часу. У результаті морський 

агент отримує не лише інформаційно-аналітичну підтримку, а й інструменти, що підвищують 

його здатність діяти проактивно, прогнозуючи можливі сценарії розвитку подій та своєчасно 

адаптуючи свою стратегію. 
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Особливе значення у цьому контексті має проблема прогнозування ключових параметрів 

діяльності морського агента. До таких параметрів належать час обробки суден у порту, 

потреба у допоміжних сервісах, обсяг витрат на агентське обслуговування, а також рівень 

завантаження портових потужностей. Невизначеність, пов’язана з коливанням ринкових умов, 

непередбачуваністю погодних факторів, затримками у митних та контрольних процедурах, 

створює високий рівень ризику для агентської діяльності. Використання методів машинного 

навчання, здатних виявляти приховані закономірності у великих масивах даних і формувати 

точні прогнози, відкриває нові перспективи для ефективної підтримки рішень. 

Застосування алгоритмів прогнозної аналітики на базі машинного навчання дозволяє 

досягти якісно нового рівня управління у морському агентуванні. Зокрема, такі методи, як 

градієнтний бустинг, ансамблеві моделі, рекурентні нейронні мережі та інші алгоритми, здатні 

враховувати складну багатофакторну природу процесів у портах і видавати прогнози з 

високим ступенем точності. Це дає змогу зменшити ймовірність перевантаження 

інфраструктури, уникнути непередбачених затримок, оптимізувати витрати на 

обслуговування суден та підвищити рівень задоволеності клієнтів. У той же час інтеграція 

прогнозних моделей у практичну діяльність морського агента потребує створення 

спеціалізованих інформаційних систем, здатних об’єднувати результати машинного навчання 

з реальними даними оперативної діяльності та забезпечувати їх доступність у зрозумілому для 

користувача форматі. 

Таким чином, постає наукова проблема, що полягає у відсутності цілісної концепції 

використання машинного навчання для підтримки прийняття рішень морськими агентами в 

умовах сервісних ергатичних систем. 

Аналіз останніх досліджень і публікацій, в яких започатковано розв’язання даної 

проблеми і виділення невирішених раніше частин загальної проблеми 

Огляд вибраних публікацій свідчить про значний зсув у бік дано-орієнтованих підходів 
для вирішення операційних задач порту та морського агентування. Домінуюча частина робіт 
концентрується на трьох взаємопов’язаних проблемах, критичних для агента: прогнозування 
часу прибуття (ETA) і часу обслуговування/перебування (VST/VTT/dwell time), оцінка та 
моніторинг конґестії порту, а також підвищення якості й повноти морських даних (з AIS та 
документів) для подальшої аналітики. Ці напрями тісно переплітаються з потребами 
морського агента, який у реальному часі координує прихід суден, готує документи і узгоджує 
послуги для клієнтів. Огляд показує, що останні дослідження по суті переводять оперативні 
питання агентів у формалізовані задачі прогнозування та класифікації, що дозволяє 
інтегрувати їх у СППР (системи підтримки прийняття рішень). 

В роботах, присвячених прогнозуванню ключових показників портової діяльності та 
підтримці операційних рішень, простежується чітка тенденція до використання як класичних 
статистичних підходів, так і сучасних методів машинного навчання. Так, у кількох емпіричних 
дослідженнях автори демонстрували ефективність деревних моделей і деревних ансамблів для 
задач прогнозування часу обслуговування суден та часу перебування в порту 
[1,5,7,11,14,17,20]. Паралельно з цим, роботи, орієнтовані на послідовні та просторово-часові 
дані (AIS-траєкторії), застосовували LSTM-архітектури, attention-механізми та інші глибинні 
мережі для вилучення складних тимчасових залежностей і просторових патернів [2,3,12]. 
Огляди й систематизації літератури підтверджують домінування двох великих парадигм: 
таблично-орієнтованих рішень, де перевага на боці tree-based методів та послідовних підходів, 
де DL-моделі показують переваги в роботі з траєкторіями й AIS-стрімами [4,8,9,14,18,19]. 
Водночас важливо відзначити, що прямі порівняння між цими класами методів часто 
ускладнені розбіжностями у предобробці, наборі ознак та метриці оцінки, що обмежує 
узагальнюваність висновків. 
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Критичною проблемою, яку визнають практично всі автори, є якість і структура вхідних 

даних. AIS дані, хоча й багаті на тимчасові відмітки й просторові координати, містять значну 

кількість пропусків, шуму та артефактів, що потребує ретельних етапів фільтрації, трекінгу та 

агрегації перед подачею в модель [3,8]. Різні стратегії кодування траєкторій (gridding, sequence 

embedding, path compression) впливають не лише на точність, а й на «чутливість» моделей до 

дрібних просторових відхилень; при грубому грідінгу втрачається деталізація, при надто 

дрібному – зростає обсяг ознак і знижується стійкість моделі. Багато досліджень ігнорують 

систематичну оцінку впливу стратегій предобробки на кінцевий результат, що є важливим 

джерелом упередженості при перенесенні моделей між портами [3,4,8]. 

Ще одне обмеження, яке послідовно фіксується в дослідженнях, – це вузька 

експериментальна репрезентативність. Більшість емпіричних робіт відпрацьовували моделі на 

даних одного або небагатьох портів і на відносно коротких часових інтервалах [1,5,7]. Як 

наслідок, висока якість апроксимації в межах одного датасету не гарантує переносимості на 

інші операційні умови, де відмінності у процедурних правилах, інфраструктурі, сезонності та 

політиках обслуговування суттєво впливають на поведінкові патерни суден. Поступова 

деградація якості прогнозів при застосуванні моделі в новому контексті означає, що питання 

domain adaptation та transfer learning лишається недооціненим у практиці [8,9,14,19]. 

Щодо вибору алгоритмів, у роботах, де домінували деревні ансамблі, відзначається їхня 

практична привабливість: швидкість навчання на табличних даних, відносна стійкість до 

шкали ознак і можливості інтерпретації через importance-метрики та SHAP-аналізи [1,5,7]. Це 

робить їх зручними для швидкого розгортання в прикладних системах, де важлива прозорість 

для оператора. Натомість у публікаціях, орієнтованих на послідовні дані, DL-підходи 

показують перевагу у вилученні складних часових закономірностей, проте страждають від 

дефіциту інтерпретованості і потребують більше даних для стабільного навчання [2,3,4,14,20]. 

Багато авторів не інтегрують у свої роботи механізми пояснюваності для DL-моделей, що 

обмежує їхню застосовність у ергатичних системах, де людський агент має розуміти джерело 

рекомендації [2,4,6]. 

Додатковий аспект, що перебуває у тіні більшості технічних публікацій, – транспозиція 

прогнозу у прескриптивні рішення. Добре описані роботи демонструють здатність моделі 

прогнозувати ETA або dwell time з певною точністю [5,6], але рідко реалізують наступний 

крок: як саме ці прогнози впливають на конкретні управлінські дії агента, наприклад на 

перепризначення буксирів, перенесення послуг постачальників чи зміни у плані швартування. 

Огляди ставлять наголос на розриві між predictive analytics і operational research–модулями, які 

виконують оптимізацію ресурсів на основі прогнозів [8,9]. Це – принципова прогалина для 

морського агента, оскільки практична цінність прогнозу визначається не лише його точністю, 

а й тим, наскільки легко та обґрунтовано він трансформується у набір дій. 

Метрики оцінки в оглянутих роботах також заслуговують на критику. Переважаючими 

є MAE/RMSE/MAPE і R², що корисні для загального порівняння моделей, але недостатні для 

оцінки операційного ефекту похибки. Небагато досліджень використовують операційно-

орієнтовані KPI (частка прогнозів у межах 30/60 хвилин, вплив на черги буксирів, економія 

витрат), хоча саме такі метрики є ключовими для агентської діяльності. Відсутність 

узгоджених операційних метрик ускладнює вибір моделі для реального застосування та 

порівняння результатів між роботами [5,6,8]. 

У частині, що стосується NLP і автоматизації документообігу, дослідження 

демонструють перспективність підходів, які витягують ризик-індикатори та структуровані 

дані з неструктурованих текстів (звітів, інструкцій, митних документів) [10,3,15,16,20]. Проте 

на практиці доступ до великих розмічених корпусів є обмеженим, а приватність та юридичні 
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обмеження ускладнюють передачу реальних даних для тренування. Тому питання створення 

анонімізованих наборів і методів слабкого навчання лишається відкритим. 

Узагальнюючи критичні спостереження, бачимо кілька ключових недоліків сучасних 

підходів: надмірна орієнтація на локальні датасети, недостатня увага до перенесення моделей 

між контекстами, дефіцит інтеграції прогнозів у прескриптивні механізми, а також недостатня 

інтерпретованість складних DL-рішень. Саме ці прогалини визначають природну перспективу 

для застосування ансамблевих підходів у контексті підтримки рішень морськими агентами. 

Ансамблеві моделі, особливо ті, що поєднують різнорідні базові алгоритми (tree-based 

методи, рекурентні/трансформерні підходи та прості регресійні моделі), можуть суттєво 

зменшити ризики, пов’язані з кожною окремою парадигмою. З технічної точки зору, ансамблі 

забезпечують підвищену стійкість до шуму та пропусків даних, компенсують слабкі сторони 

одних моделей силами інших і часто показують кращу здатність до генералізації при 

обмеженій кількості ознак. Практично важливим є також те, що ансамбль може бути 

спроектований так, щоб кінцевий шар відповідав за інтерпретованість і квантифікацію 

невизначеності (наприклад, шляхом включення градієнтного бустингу з виходами для 

квантильних прогнозів та DBSCAN/LSTM-шарів для послідовних патернів). Це дозволяє 

поєднати оперативну прозорість для агента та точність, притаманну DL-архітектурам. 

Крім того, архітектури stacking/blending дають можливість організувати моделі за 

ролями: екстрактори складних просторово-часових ознак (LSTM/Transformer), сильні 

табличні аппроксматори для остаточного прогнозу (XGBoost/LightGBM), а також модулі для 

калибрування і відхилення прогнозів (conformal prediction, quantile regression). Таке розділення 

обов’язків є природним для сервісної ергатичної системи, де кожен компонент відповідає за 

свою когнітивну функцію, а агент отримує не лише числовий прогноз, а й інтерпретований 

доповідний пакет з оцінкою невизначеності і пропозиціями прескриптивних дій. 

На базі проведеного аналізу досліджень слід зауважити, що більшість з них орієнтовані 

на технічну точність моделей, але значно рідше досліджують їхні організаційні й юридичні 

наслідки для агентської практики. Існує ризик, що без продуманої інтеграції та 

інтерпретованості агенти втратять довіру до систем, або ж автоматизовані рекомендації 

призведуть до непрогнозованих ланцюгових ефектів у портовій екосистемі. Також, етичні й 

регуляторні питання (включаючи зберігання персональних/комерційних даних і 

відповідальність за рекомендації) практично не піднімались у більшості технічних статей і 

потребують окремого дослідження. 

Незважаючи на наявність окремих досліджень у галузі інтелектуальних систем 

управління транспортом та логістикою, питання інтеграції прогностичних алгоритмів 

безпосередньо в діяльність морського агента досі залишається недостатньо опрацьованим. 

Більшість існуючих рішень орієнтовані на макрорівень управління транспортними потоками, 

тоді як специфіка агентської роботи передбачає високу деталізацію та необхідність прийняття 

рішень у режимі обмеженого часу та підвищеної невизначеності. 

Отже, на підставі критичного аналізу літератури, найбільш перспективним шляхом для 

подальшої роботи видається розробка гібридного ансамблевого підходу, що інтегрує переваги 

tree-based методів для інтерпретації і швидкого прогнозу, DL-компонентів для обробки 

послідовних і просторових даних, та модулів для оцінки невизначеності і трансформації 

прогнозу у набір оптимізаційних рішень. Такий підхід відповідає як вимогам точності, так і 

ергатичним вимогам прозорості, що є критично важливими для морського агента в сервісній 

ергатичній системі. 
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Формулювання цілей статті (постановка завдання).  

Метою статті є обґрунтування та розробка методологічних засад застосування 

ансамблевих моделей машинного навчання для підтримки прийняття рішень морськими 

агентами в сервісних ергатичних системах шляхом прогнозування ключових параметрів 

агентської діяльності, що забезпечить підвищення точності планування та ефективності 

управлінських рішень. 

Для досягнення поставленої мети в статті вирішуються такі завдання: 

- збір та систематизація даних, що відображають діяльність морських агентів та 

параметри обслуговування суден; 

- проведення процедур ETL для очищення, інтеграції та структурування даних з 

урахуванням специфіки інформаційних потоків у морській галузі; 

- розробка комбінації ансамблевих моделей машинного навчання різного типу 

(бустингові алгоритми, стекінг моделей, гібридні ансамблі з елементами глибинного 

навчання) для прогнозування ключових параметрів агентської діяльності; 

- проведення оцінки точності та стійкості розроблених моделей з використанням 

класичних статистичних метрик та операційно-орієнтованих показників ефективності; 

- створення модульної структури прототипу системи підтримки прийняття рішень 

морськими агентами, здатної забезпечити підвищену точність планування та зниження ризиків 

управлінських рішень. 

Наукова актуальність дослідження зумовлена потребою підвищення ефективності 

морського агентування в умовах зростання інформаційних навантажень та глобальної 

цифрової трансформації транспортної галузі. Запропонований підхід базується на поєднанні 

формалізованого опису діяльності агента як компонента сервісної ергатичної системи та 

застосуванні методів машинного навчання для прогнозування ключових параметрів цієї 

діяльності. Це відкриває можливості для підвищення оперативності й точності управлінських 

рішень, створення нової парадигми взаємодії людини та інтелектуальних інформаційних 

систем у сфері морського транспорту. 

Виклад матеріалу дослідження з повним обґрунтуванням отриманих наукових 

результатів  

Концептуальна формалізація дослідження.  

Концепція дослідження формалізується як задача оптимізації управлінського рішення 

*D з множини можливих дій D  шляхом мінімізації оцінки операційного ризику R  морського 

агента. Ризик є функціоналом, залежним від прогнозованих значень ключових параметрів 

агентської діяльності paramK , що включають час прибуття та тривалість стоянки. 

))](([min
*

XKR param
DD  , 

(1) 

де )(XK param – являє собою функцію ансамблевого прогнозування )(XEnsebmle , яка 

використовує вектор вхідних контекстних та часових ознак X для отримання високоточного 

прогнозу. 

Методологічні засади застосування ансамблевих моделей машинного навчання 

ґрунтуються на необхідності досягнення мінімальної похибки прогнозу ключових 

операційних параметрів для надійної оцінки ризику та обґрунтування оптимального рішення. 
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Функція прогнозу реалізується через вагову композицію бустингової стекінгової та гібридної 

моделей, що забезпечує робастність та здатність до обробки нелінійних залежностей.  

Ключовими параметрами агентської діяльності, що критично впливають на точність 

планування, є прогнозований час прибуття та час операційної стоянки судна у порту, оскільки 

їхня варіативність безпосередньо визначає ефективність всього сервісного логістичного 

ланцюга. Ефективність управлінських рішень залежить від кількісної оцінки операційних та 

фінансових показників ризику, які формуються на основі прогнозних значень і відображають 

потенційні втрати від затримок або відхилень від запланованого обсягу обробленого вантажу. 

Тому ефективності системи підтримки рішень, яка розробляється, полягає у здатності агента 

оптимально коригувати операційні змінні як-от швидкість судна та графік перепланування у 

відповідь на прогнозовані контекстні параметри наприклад завантаженість порту чи 

метеоумови. 

Процедури обробки даних. 

Процес збору та систематизації даних у контексті морського агентування є ключовим 

етапом, який визначає якість подальших моделей машинного навчання. Схема включає 

декілька взаємопов’язаних блоків, кожен з яких виконує критично важливу функцію (рис.1). 

 

 

Рис 1. Набір пропонованих компонентів для збору та систематизації даних з діяльність 

морських агентів 

Вирішення завдання збору та систематизації даних у практичному аспекті починається з 

ідентифікації потреб майбутніх моделей машинного навчання. Передусім визначається, які 

саме параметри агентської діяльності є ключовими для прогнозування: час обробки судна в 

порту, витрати на агентування, використання портових ресурсів. Це дозволяє сформулювати 

вимоги до даних. Далі здійснюється аудит наявних джерел інформації в агентській компанії 

та суміжних структурах. Зазвичай, дані зберігаються у вигляді транзакційних записів у базах 

даних, Excel-файлів, а також у вигляді електронних повідомлень чи сканованих документів. 

На етапі первинного збору застосовується гібридний підхід. Автоматизовані дані (AIS-

потоки, API портових служб) інтегруються через ETL-процеси, які запускаються з певною 

періодичністю, забезпечуючи регулярне оновлення бази. Неструктуровані дані обробляються 

інструментами розпізнавання та попереднього аналізу. Важливим аспектом є документування 

процедур збору, адже це забезпечує повторюваність процесу та контроль за якістю. 

Після завантаження даних виконується їхня фільтрація. Практично це реалізується через 

скрипти перевірки, що автоматично знаходять дублікати (наприклад, однакові IMO-номери з 

різними часовими мітками), виявляють логічні помилки (прибуття раніше відправлення), 

перевіряють допустимі діапазони значень. У випадку виявлення пропусків використовуються 

методи відновлення. Наприклад, час приходу судна може бути відновлений на основі 
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середнього часу подібних операцій у конкретному порту або за допомогою інтерполяції між 

сусідніми записами. Якщо відновлення неможливе, значення залишаються пропущеними, але 

фіксуються в метаданих. 

Далі реалізується нормалізація. Практичним рішенням тут є створення довідкових 

таблиць для портів, валют, ідентифікаторів суден, що забезпечує узгодженість і уникнення 

неоднозначностей. Наприклад, якщо в одних документах судно вказане як «MSC Anna», а в 

інших як «IMO 9305715», то всі записи зводяться до одного уніфікованого ідентифікатора. 

Аналогічно, валютні дані конвертуються до єдиної валюти з використанням офіційних курсів 

на дату транзакції. 

Після нормалізації формуються структуровані набори. Це таблиці з ознаками, що 

відображають часові, економічні та технічні характеристики. Залежно від цілей, таблиці 

можуть бути денормалізовані (для прискорення обчислень) або збережені у нормалізованому 

вигляді (для забезпечення гнучких зв’язків). Важливим етапом є створення історичних рядів, 

які дозволяють моделювати тренди та сезонність у роботі портів і агентів. 

Фінальним кроком є розгортання централізованого сховища даних. Воно забезпечує не 

лише зберігання, але й можливості контролю доступу та формування навчальних і тестових 

вибірок для моделей. У практичному рішенні це означає налаштування бази даних з 

розподілом прав доступу, автоматизацію завантаження через ETL-пайплайни (рис.2) та 

створення інтерфейсів для зручного доступу до даних як з боку аналітиків, так і з боку систем 

машинного навчання. 

На практиці реалізація цього завдання передбачає інтеграцію різнорідних джерел 

інформації, які суттєво відрізняються за структурою, частотою оновлення та ступенем 

достовірності. 

Першим етапом є витяг даних. У морській галузі джерелами виступають системи AIS, 

які надають інформацію про місцезнаходження суден, портові інформаційні сервіси, бази 

даних агентів, транспортно-експедиторські системи, бухгалтерські документи та електронна 

переписка. Практична реалізація передбачає створення спеціалізованих конекторів та API-

клієнтів, що можуть працювати у режимі реального часу. Наприклад, для AIS 

використовується безперервний потік даних у форматі NMEA, тоді як для портових 

адміністрацій – запитово-відповідний REST API. Важливою частиною є також обробка 

напівструктурованих документів (PDF, Excel), для чого застосовується OCR і парсери. 

Далі відбувається очистка даних, що включає видалення дублікатів, виправлення 

форматних невідповідностей (наприклад, у відображенні координат чи часових відміток), 

логічні перевірки (наприклад, неможливість одночасної стоянки судна в двох різних портах), 

а також приведення даних до єдиних стандартів. На практиці це вирішується за допомогою 

спеціальних бібліотек для валідації (Great Expectations, Pandera) та модулів для перевірки 

бізнес-правил. 

Наступним етапом є трансформація. Дані уніфікуються за валютами, часовими поясами, 

кодами портів (UN/LOCODE), типами вантажів та суден. Це дозволяє уникнути 

непорівнянності значень та спрощує подальший аналіз. Для реалізації трансформації зазвичай 

застосовують Spark або Pandas-пайплайни, які автоматично виконують агрегування, побудову 

часових фіч, обрахунок похідних показників. У цьому контексті важливим є створення єдиної 

моделі даних, яка включає події (прибуття/відхід), витрати на агентське обслуговування, 

технічні характеристики суден, фінансові операції.  

На етапі інтеграції дані з різних джерел зливаються у єдиний набір за допомогою 

ключових ідентифікаторів: IMO-номерів суден, кодів рейсів, внутрішніх ID контрактів. 

Використання таких ключів дозволяє зменшити кількість невідповідностей і забезпечує 
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зв’язність усього інформаційного ланцюга. При цьому в реальних умовах виникає проблема 

часткової відсутності ключів або різних форматів їхнього представлення, що вимагає 

створення спеціальних алгоритмів зіставлення записів (record linkage). 

При структуруванні створюються нормалізовані таблиці та тематичні дата-сети: дані про 

рух суден, планування стоянки, фінансові витрати на агентське обслуговування, тарифи 

портових послуг. Практично це реалізується через побудову схем даних (data marts), які 

оптимізовані під конкретні аналітичні завдання. Наприклад, окрема таблиця подій може 

містити уніфіковані записи про ETA, ETD, фактичний час заходу та відходу, що критично 

важливо для прогнозування завантаженості порту та планування ресурсів. 

 

Рис. 2. Послідовність проведення ETL процедур 

Процедура завантаження (Load) передбачає завантаження очищених і трансформованих 

даних у сховище (Data Warehouse). У практичних умовах для морської галузі доцільно 

використовувати як локальні реляційні бази (PostgreSQL), так і хмарні рішення (BigQuery, 

Snowflake), що дозволяють масштабувати обчислення та інтегрувати аналітичні інструменти. 

Ключовим моментом є налаштування інкрементального завантаження, яке мінімізує обсяги 

даних, що переносяться, та забезпечує актуальність сховища в реальному часі. 

Процедури аналізу та підтримки прийняття рішень. 

На третьому етапі реалізації дослідження було здійснено розробку та навчання трьох 

ансамблевих моделей машинного навчання для прогнозування ключових параметрів 

агентської діяльності:  
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Діаграмма порівняльних результатів дослідження побудованих моделей машинного 

навчання наведена на рис.3.  

Бустингова модель LightGBM, яка дозволяє ефективно працювати з нерівномірними 

даними, обробляти складні нелінійні залежності та забезпечує високу стійкість до шуму. 

Ключові гіперпараметри обираються з метою максимізації узагальнюючої здатності та 

мінімізації перенавчання. Параметр num_leaves встановлюється у помірно великих межах для 

забезпечення адаптивності до складних структур даних, тоді як learning_rate обирається 

невеликим для підвищення стійкості ансамблю. Значення n_estimators збільшується для повної 

реалізації потенціалу бустингу, а min_data_in_leaf коригується для забезпечення надійності 

прогнозів на шумних даних. 

Стекінгової модель, що поєднує базові алгоритми дерева рішень, логістичну регресію та 

SVM, забезпечує баланс між узагальненням та адаптивністю. Створення моделі передбачає 

індивідуальне налаштування гіперпараметрів базових алгоритмів з метою мінімізації 

кореляції між їхніми помилками. Наприклад, для Дерева рішень обмежується max_depth для 

контролю дисперсії, а для SVM налаштовуються параметри ядра. Найважливіший практичний 

аспект навчання стекінгу полягає у використанні k-fold крос-валідації для генерації 

неупереджених поза-вибіркових прогнозів базових моделей, які слугують вхідними ознаками 

для навчання мета-моделі. Це забезпечує надійність фінального прогнозу. 

Гібридна ансамблева модель поєднує класичні алгоритми (Random Forest) з елементами 

глибинного навчання (модель LSTM), орієнтуючись на врахування часових рядів та 

контекстних параметрів. Random Forest забезпечує високу інтерпретованість та надійність для 

статичних табличних ознак, тоді як LSTM-гілка спеціалізується на моделюванні послідовних 

залежностей, таких як динаміка погодних умов або послідовність оперативних рішень. 

Практична реалізація часто відбувається через архітектуру з паралельними гілками, де виходи 

обох моделей конкатенуються та інтегруються у фінальному густому. Гіперпараметри Random 

Forest налаштовуються для зменшення дисперсії (наприклад, велике n_estimators), а для 

LSTM-мережі обираються помірні значення recurrent_units та невеликий dropout для 

регуляризації глибокої частини моделі. 

 

Рис. 3. Діаграма порівняльних результатів дослідження побудованих моделей машинного 

навчання 
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Для оцінки їх ефективності було використано ключові метрики: Accuracy, F1-score та 

MAE (інвертоване для зручності порівняння). Результати показали, що бустингова модель 

перевершує інші на ~20%, тоді як стекінг та гібридна модель відрізняються між собою в межах 

5 - 7%, підтверджуючи доцільність вибору бустингу як основного підходу. 

На основі створених предиктивних моделей машиного навчання стає можливим 

розробка проекту системи підтримки прийняття рішень. Модульна архітектура прототипу 

даної системи розроблена на основі принципу функціональної декомпозиції для забезпечення 

високої точності прогнозування та зниження ризиків управлінських рішень у сервісних 

ергатичних системах. Ця структура складається з п'яти ключових взаємопов’язаних модулів, 

кожен з яких виконує специфічну роль у ланцюзі обробки інформації та формування 

рекомендацій. 

Модуль збору та попередньої обробки даних який відповідає за інтеграцію різнорідних 

інформаційних потоків, що включають дані AIS про рух суден, метеорологічні прогнози, 

відомості про завантаженість портів та динаміку ринкових цін. Його функціональність 

охоплює очищення даних, обробку пропущених значень, нівелювання шуму, а також 

інженерію ознак. Зокрема відбувається структуризація часових рядів та підготовка табличних 

ознак для подальшого аналізу. 

Центральне місце в архітектурі займає модуль ансамблевого прогнозування який містить 

розроблену комбінацію моделей машинного навчання. Бустингова модель LightGBM виконує 

базове прогнозування ключових параметрів агентської діяльності завдяки своїй здатності 

ефективно працювати з нерівномірними даними. Стекінгова модель та гібридний ансамбль 

виступають як додаткові рівні узагальнення, забезпечуючи робастність та врахування 

складних контекстних залежностей. Результатом роботи модуля є консенсусний прогноз з 

оцінкою його невизначеності. 

Розроблений засобами мови програмування Javascript та платформи NodeJS прототип 

інтерфейсу системи підтримки прийняття рішень морським агентом у вигляді програмного 

веб-орієнтованого SPA-застосування наведено на рис .4. 

 

Рис. 4. Прототип інтерфейсу системи підтримки прийняття рішень морським агентом 
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Модуль оцінки ризиків та оптимізації отримує прогнозні значення від ансамблевого 

модуля та трансформує їх в операційні та фінансові показники ризику. Він використовує 

методи кількісної оцінки потенційних втрат від затримок, простоїв або відхилень від плану. 

На основі цих оцінок модуль формує набір альтернативних управлінських рішень, таких як 

зміна швидкості судна, коригування маршруту або перепланування операцій у порту, 

обираючи оптимальне рішення відповідно до цільової функції мінімізації ризику. 

Модуль підтримки рішень та візуалізації є інтерфейсною складовою системи, що 

забезпечує взаємодію з морським агентом. Цей модуль представляє прогнози, оцінки ризику 

та оптимізовані рекомендації у зрозумілій та інтуїтивно зрозумілій графічній формі. Він 

підтримує функціонал сценарного аналізу, дозволяючи агенту моделювати вплив власних 

рішень на прогнозовані параметри та ризики в режимі реального часу. 

Модуль бази знань та зворотного зв’язку виконує функцію довготривалого зберігання 

історичних даних, журналювання всіх прийнятих агентом рішень та порівняння їх з 

фактичними результатами. Зібрана інформація використовується як механізм зворотного 

зв’язку для періодичного перенавчання ансамблевих моделей та постійного підвищення їхньої 

прогностичної точності. Таким чином забезпечується безперервне адаптивне вдосконалення 

системи. 

Висновки і перспектива подальшої роботи по даному напрямку  

Обґрунтовано ключову роль ансамблевого прогнозування у підвищенні точності 

планування та ефективності управлінських рішень морськими агентами, які функціонують у 

високодинамічному середовищі сервісних ергатичних систем. Центральним науковим 

висновком є підтвердження переваги бустингової моделі LightGBM над альтернативними 

ансамблевими конфігураціями, включаючи стекінговий та гібридний підходи. 

Експериментально встановлено, що LightGBM забезпечує зростання точності прогнозування 

ключових операційних параметрів на рівні близько двадцяти відсотків, що свідчить про її 

виняткову здатність ефективно обробляти нелінійні залежності та нерівномірні дані, 

характерні для морської агентської діяльності. Це доводить, що саме оптимізований 

градієнтний бустинг має слугувати прогностичним ядром для систем підтримки прийняття 

рішень, оскільки він забезпечує мінімальну похибку прогнозу та, як наслідок, найнадійнішу 

основу для оцінки ризику. 

Розроблена концепція системи підтримки рішень відповідає вимогам ергатичних систем, 

де людина-оператор (морський агент) має взаємодіяти з автоматизованим інтелектуальним 

асистентом. Встановлено, що інтеграція модуля оцінки ризиків та оптимізації дозволяє 

трансформувати високоточні прогнозні значення, отримані від ансамблю, у конкретні 

показники операційного ризику та формувати набір альтернативних управлінських рішень. Це 

забезпечує перехід від простого прогнозування до прескриптивної аналітики, дозволяючи 

агенту обирати оптимальні дії для мінімізації потенційних фінансових втрат, пов’язаних із 

затримками або неточностями у плануванні. Таким чином, досягається суттєве зниження 

ризиків та підвищується загальна ефективність управління логістичними процесами. 

Визначено, що ключовими параметрами, на які впливає система, є прогнозований час 

прибуття, тривалість стоянки та оцінка показників ризику, які агент коригує, змінюючи 

операційні змінні на кшталт швидкості судна. 

Подальший розвиток тематики дослідження має бути спрямований на посилення 

надійності та прозорості прогностичних моделей. Актуальним напрямом є впровадження 

методів пояснюваного штучного інтелекту, що дозволить морському агенту не лише 

отримувати рекомендації, але й розуміти чинники впливу кожної окремої ознаки на фінальний 
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прогноз. Така прозорість є необхідною умовою для забезпечення довіри оператора до системи 

у критичних ситуаціях. 

Другим важливим напрямом є модернізація гібридного ансамблю шляхом заміни 

традиційних рекурентних нейронних мереж на трансформерні архітектури. Це дозволить 

значно підвищити якість обробки складних довгострокових часових залежностей у великих 

масивах послідовних даних, що надходять від системи автоматичної ідентифікації суден та 

метеорологічних служб. 

Додатково слід зазначити, що ще один перспективний шлях розвитку пропонованої 

системи полягає у розширенні функціоналу оптимізаційного модуля для забезпечення 

динамічного перепланування в режимі реального часу. Це передбачає створення механізму, 

здатного автоматично генерувати та пропонувати оперативні коригування управлінських 

рішень при надходженні нових вхідних даних чи при зміні зовнішніх умов, що сприятиме 

досягненню максимальної гнучкості та адаптивності агента до непередбачуваних обставин. 
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