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ABSTRACT 

This study presents the development of a computer vision system based on the YOLOv8 

architecture to automatically determine the ships’ aspect angle in real time. The system, named 

Shipboard Artificial Visual Observation System (SAVOS), aims to enhance maritime navigation by 

detecting vessel orientation from onboard camera imagery, enabling early collision risk assessment 

in line with COLREGs regulations. A custom dataset with diverse ship types, environmental 

conditions, and viewing angles was constructed using publicly available sources and original 

photography. Eight orientation classes were labeled, and the dataset was split for training, 

validation, and testing. The lightweight YOLOv8n model was selected for its high inference speed 

and adaptability to limited hardware, making it suitable for deployment onboard vessels. Training 

was performed using Google Colab’s GPU environment, with progressive image resizing, parameter 

tuning, and various augmentation techniques to improve generalization. Evaluation metrics included 

mAP@0.5, mAP@0.5:0.95, precision, recall, and other relevant parameters. Despite promising 

trends, results indicated challenges in achieving high classification accuracy, with precision and 

class loss requiring further optimization. The study highlights the potential of real-time visual 

orientation detection for both civilian and defense maritime applications, while underlining the need 

for improved dataset balance and model tuning. SAVOS offers a foundation for future autonomous 

navigation systems and advanced vessel behavior monitoring. 

Keywords: YOLO, computer vision, machine learning, aspect angle, mAP@0.5, 

mAP@0.5:0.95, precision, recall, SAVOS 

АНОТАЦІЯ 

У цьому дослідженні представлено розробку системи комп’ютерного зору на основі 

архітектури YOLOv8 для автоматичного визначення ракурсу судна у режимі реального часу. 

Під визначенням ракурсу судна слід розуміти відносне положення діаметральної площини 

судна-цілі щодо точки спостереження, визначене за візуальним зображенням. Система, що 

отримала назву ССШВС, покликана підвищити ефективність морської навігації шляхом 

виявлення орієнтації судна за зображеннями з бортових камер, що дає змогу завчасно 

оцінювати ризик зіткнення відповідно до вимог Міжнародних правил запобігання зіткненням 

суден у морі (МПЗЗС). Було створено спеціалізований набір даних, який охоплює різні типи 

суден, погодні умови та кути огляду, із використанням відкритих джерел та власних 

фотографій. Було промарковано вісім класів орієнтації, після чого набір даних поділено на 

тренувальну, перевірочну та тестову вибірки. Для розпізнавання було обрано найлегшу 

модель YOLOv8n, яка забезпечує високу швидкість інференсу та адаптована до обмежених 
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апаратних ресурсів, що робить її придатною для використання безпосередньо на борту 

судна. Навчання проводилося в середовищі Google Colab із використанням графічного 

процесора, поступової зміни розміру зображень, налаштування параметрів та різних технік 

аугментації для покращення здатності до узагальнення. Оцінювання моделі здійснювалося за 

такими метриками, як mAP@0.5, mAP@0.5:0.95, точність, повнота та іншими 

релевантними показниками. Попри обнадійливі тенденції, результати вказали на труднощі у 

досягненні високої точності класифікації – зокрема точність та втрата по класах 

потребують подальшої оптимізації. Дослідження підкреслює потенціал виявлення ракурсу 

суден у реальному часі як для цивільного, так і для оборонного морського використання, 

водночас наголошуючи на необхідності покращення збалансованості набору даних і 

налаштування моделі. ССШВС створює основу для допоміжних інструментів у автономних 

навігаційних системах, сприяючи ранньому виявленню ракурсу суден для подальшої інтеграції 

з даними про рух і моніторингу поведінки суден. 

Ключові слова: YOLO, комп’ютерний зір, машинне навчання, ракурс судна, виявлення, 

mAP@0.5, mAP@0.5:0.95, точність, повнота, ССШВС 

Постановка проблеми в загальному вигляді та її зв'язок із важливими науковими 

чи практичними завданнями  

Зі стрімким розвитком штучного інтелекту та цифрових технологій судноплавна галузь 

переживає трансформаційні зміни, спрямовані на підвищення ефективності, безпеки та 

екологічності.  

Це зумовило розвиток автономного судноплавства, автоматизацію портових процесів та 

має вплив на усі сфери, пов’язані з транспортуванням вантажів морськими шляхами.  

Так Система управління рухом суден наступного покоління, на базі штучного інтелекту, 

розробляється на замовлення портового управління Сінгапуру [1]. Цифрова обробка та 

моніторинг вантажних перевезень стають дедалі важливішими для забезпечення безпечнішого 

та екологічнішого функціонування портової інфраструктури. Порт Гамбурга використовує 

технологію цифрового двійника портової інфраструктури для моніторингу та управління 

резервуарами з рідкими вантажами [2]. Порт «Корпус Крісті» в Техасі, третій за величиною 

порт США за тоннажем, що займається експортом сирої нафти, використовує програмне 

забезпечення для командування та управління роботою порту на базі штучного інтелекту під 

назвою OPTICS [3]. Автономний корабель Sea Hunter, що спроектований для військово-

морських сил США та проект прикордонних служб Європейського союзу PROMENADE [4] – 

лише деякі з численних прикладів.  

Стабільне функціонування судноплавної інфраструктури безпосередньо залежить від 

безвідмовної роботи екіпажів суден та автономних систем судноводіння. Проте високе 

навантаження та людський фактор залишаються значущими причинами морських аварій, 

зокрема зіткнень або посадок на мілину, спричинених втомою, затримкою в прийнятті рішень 

або поганою комунікацією. Ці ризики значно посилюються в умовах, коли спуфінг і глушіння 

сигналів GPS порушують надійність даних AIS та знижують ефективність систем ARPA – 

особливо в автономному або безекіпажному режимі судноводіння. Навіть у керованому 

режимі, в районах з інтенсивним рухом, порушення роботи AIS і ARPA призводить до 

серйозного зниження ситуаційної обізнаності [5]. 

В якості доповнення до вищезазначених систем у даній роботі було розроблено систему 

комп’ютерного зору на базі штучного інтелекту, здатну автоматично визначати ракурс судна. 

На відміну від традиційних систем, ця технологія не залежить від сигналів GPS, AIS, 

гірокомпасу або лагу, що забезпечує її надійну роботу навіть в умовах втрати або спотворення 
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навігаційної інформації. Водночас вона може використовувати ці сигнали для підвищення 

точності в нормальному режимі експлуатації. 

Розроблена система може стати важливим доповнюючим елементом резервного 

контролю, виконуючи роль раннього виявлення та візуального «спостерігача» згідно з 

МПЗЗС. Вона може бути інтегрована в системи автоматичного виявлення та відстеження 

цілей, покращуючи навігаційну поінформованість як для екіпажів, так і для автономних суден. 

Крім цивільного призначення, технологія має значний потенціал для застосування у військовій 

та прикордонній сфері, забезпечуючи оперативну класифікацію загроз та підтримку навігації. 

Аналіз останніх досліджень і публікацій, в яких започатковано розв'язання даної 

проблеми і виділення невирішених раніше частин загальної проблеми 

Існує низка сучасних алгоритмів комп’ютерного зору для виявлення об’єктів у 

морському середовищі, зокрема SSD (Single Shot MultiBox Detector), Faster R-CNN, 

EfficientDet та серія YOLO (You Only Look Once). Ці моделі широко застосовуються для 

виявлення суден, морського сміття, малих плавучих об’єктів і навіть мікроорганізмів у 

складних умовах спостереження – як на супутникових, так і на аерофотознімках чи даних із 

бортових камер. 

У рамках огляду сучасних досягнень в галузі одноетапних моделей виявлення об’єктів, 

YOLOv8 демонструє суттєві переваги порівняно з попередніми версіями та класичними 

двоступеневими алгоритмами. Аналіз архітектур, опублікований у [6], показує еволюцію від 

YOLOv1 до YOLOv8, підкреслюючи зростання продуктивності й точності кожної версії.  

На рис.1 зображені результати порівняння різних версій моделей YOLOv8 YOLOv7, та 

YOLOv5 [7]. Порівняння продуктивності відбувалось на базі платформи NVIDIA Jetson AGX 

Orin 32 ГБ , вбудованому комп'ютері зі штучним інтелектом, та на настільній відеокарті RTX 

4070 Ti. mAP@0.5 та mAP@0.5:0.95 – середні показники точності (детально їх суть буде 

розкрита в основному тексті роботи) (табл.1). FPS (Frames Per Second) – це кількість кадрів, 

які система здатна обробити за одну секунду, і є ключовим показником швидкодії моделі в 

режимі реального часу. 

 

Рис.1 Порівняння моделей YOLOv8 YOLOv7, та YOLOv5 на платформах NVIDIA Jetson 

AGX Orin 32 ГБ та RTX 4070 Ti. Вісь абсцис –  швидкодія FPS (кадри/с), вісь ординат – 

mAP@0.5:0.95 (%) 

https://www.stereolabs.com/store/products/nvidia-jetson-agx-orin-developer-kit
https://www.stereolabs.com/store/products/nvidia-jetson-agx-orin-developer-kit
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Таблиця 1.  Порівняння моделей YOLOv8 YOLOv7, та YOLOv5 

Модель mAP@0.5:0.95 mAP@0.5 AGX Orin (FPS) RTX 4070 Ti (FPS) 

v5n 28.0 45.7 370 934 

v8n 37.3 52.5 383 1163 

v7-tiny 37.4 55.2 290 917 

v5s 37.4 56.8 277 877 

v8s 44.9 61.8 260 925 

v5m 45.4 64.1 160 586 

v8m 50.2 67.2 137 540 

v5l 49.0 67.3 116 446 

v7 51.2 69.7 115 452 

v8l 52.9 69.8 95 391 

v5x 50.7 68.9 67 252 

v7x 52.9 71.1 77 294 

v8x 53.9 71.0 64 236 

Як показує огляд YOLOBench, YOLOv8 забезпечує більш ефективний баланс між 

часовими витратами на обробку (латентністю) та якістю виявлення (mAP), що робить її 

кращою для систем реального часу [8]. Цікавим доповненням є порівняльне дослідження [9], 

у якому проведено оцінювання моделей YOLOv5, YOLOv8, YOLOv9, YOLOv10 та YOLOv11 

для задачі розпізнавання елементів електрообладнання: модель YOLOv8 досягла mAP@0.5 

≈ 55.5 %, поступаючись лише YOLOv11 (≈ 57.2 %), але перевищуючи результати YOLOv5 

(≈ 54.4 %) та YOLOv10 (≈ 48 %). 

У контексті морського середовища, на базі YOLO були розроблені моделі, які 

дозволяють розпізнавати, наприклад, різні класи суден, плавуче сміття чи допомагають при 

проведенні пошуково-рятувальних операцій [10-14]. Пристрої з використанням такої 

технології впроваджуються на суднах, безпілотних літальних об’єктах чи  супутниках [10-15]. 

Всі наведені роботи використовують різні джерела інформації: це можуть бути аеро знімки 

або супутникові знімки [10,12,14,16]. Отримана модель YOLOv8 для розпізнавання ракурсу 

суден, розрахована на роботу в суднових умовах, використовуючи фото та відео інформацію 

отриману бортовою камерою. Варто відзначити, що розроблені раніше моделі штучного зору 

орієнтовані на визначення наявності об’єкта (суден, людей, сміття), а не визначенні його 

ракурсу. 

Формулювання цілей статті (постановка завдання)  

Метою даного дослідження є розробка системи комп’ютерного зору, що автоматично 

визначає ракурс судна за зображеннями з бортових камер у денний час і за умов достатньої 

видимості. Суднова система штучного візуального спостереження (ССШВС) орієнтована на 

використання в якості допоміжного інструмента підвищення ситуаційної обізнаності та 

раннього виявлення ризику зближення або зіткнення, відповідно до вимог МПЗЗС, та може 

бути інтегрована у навігаційні комплекси автономних і традиційних суден. 

ССШВС не призначений для роботи в умовах обмеженої видимості (туман, сильний дощ, 

сніг, дим), коли неможливо отримати надійне зображення. Режими розпізнавання 

навігаційних вогнів, нічні алгоритми обробки зображень і налаштування камер для роботи в 

темний час доби не входять до обсягу цієї роботи та є предметом майбутніх досліджень. 

Запропоноване рішення може бути використане як допоміжний інструмент виявлення 

орієнтації суден у системах цивільного, оборонного та прикордонного призначення. 
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Виклад матеріалу дослідження з повним обґрунтуванням отриманих наукових 

результатів 

1. Середовище виконання  

Для тренування моделі штучного зору авторами була використана модель YOLOv8n 

(You Only Look Once version 8 - nano) як основний інструмент для виявлення та класифікації 

об’єктів у відеопотоці або зображень, отриманих з бортових камер. Вибір цієї моделі 

обумовлений високою швидкістю розпізнавання об’єктів на обмежених обчислювальних 

ресурсах, що підходить для використання на борту суден. Попри невеликий розмір, модель 

демонструє конкурентоспроможну точність в задачах виявлення обʼєктів, що критично 

важливо для роботи в реальному часі. YOLOv8n, як і інші моделі серії YOLOv8, підтримує 

повноцінне донавчання на власному наборі даних. Проте, завдяки своїй компактній 

архітектурі, YOLOv8n дозволяє швидше проводити навчання навіть за обмежених апаратних 

ресурсів. 

Тренування та розрахунки ефективності моделі штучного зору у межах проведеного 

дослідження виконувалися у хмарному середовищі Google Colaboratory (Google Colab), що 

надає доступ до обчислень в середовищі Python 3 із використанням апаратного прискорення 

на основі графічного процесора (GPU) NVIDIA T4. Даний графічний процесор має 2560 CUDA 

ядер, оснащений 16 ГБ пам’яті GDDR6 та забезпечує пропускну здатність пам’яті до 320 ГБ/с, 

що дозволяє ефективно виконувати обчислення, пов’язані із глибинним навчанням, що 

дозволяє суттєво зменшити час проведення тренувань моделей. 

2. Створення власної бази даних 

Для проведення тренування моделі штучного зору був створений власний набір даних. 

Початковий набір даних складався з 925 картинок. Об’єкту на картинці була присвоєний один 

з восьми ракурсів: forward, port bow, port side, starboard bow, starboard quarter, starboard side, 

stern, port quarter. Загальна кількість об’єктів наведена в таблиці 2. Приблизний розподіл: 70% 

– дані для тренування, 20% – перевірочна вибірка, 10% – дані для тестування. Одна картинка 

могла містити до 10 суден, за рахунок цього кількість об’єктів не співпадає з кількістю 

картинок, через це похибка в розподілі даних коливається в межах одного відсотка. 

Таблиця 2.  Розподіл даних для тренування, перевірки, та тестування 

№ класу Назва класу Тренування Перевірка Тестування 

0 forward 105 26 17 

1 port bow 164 42 19 

2 port side 372 112 52 

3 starboard bow 153 29 17 

4 starboard quarter 109 33 13 

5 starboard side 273 94 41 

6 stern 72 17 6 

7 port quarter 110 21 16 

 Усього 1358 374 181 

Для формування бази даних були використані зображення з відкритого ресурсу Flickr 

[17], а також авторські фотографії, зроблені під час реальних морських переходів. Зйомка 

здійснювалася як з борту судна, так і з берега, з висоти, що відповідає рівню бортової 

апаратури, на якій передбачається встановлення системи штучного зору. Це забезпечило 
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наближення умов зйомки до реального середовища експлуатації моделі. Усі використані 

зображення знаходяться у відкритому доступі або створені самостійно, що забезпечує 

дотримання етичних та юридичних вимог щодо авторських прав. 

Під час створення навчальної вибірки було відібрано зображення з урахуванням таких 

факторів: різний час доби (день, ніч, ранішній та вечірній час), ускладнені метеоумови 

(наявність опадів, шторм), різний масштаб, максимальне різноманіття суден та ракурсів 

зйомки (рис.2). Географічне охоплення зображень є глобальним, що забезпечує 

репрезентативність даних для різних регіонів світу. Роздільна здатність кожного зображення 

складає не менше ніж 700 х 700 пікселів, що гарантує високу якість та деталізацію вхідних 

даних. 

   

   

   

   

а)                                                б)                                                в) 

Рис. 2 Приклад навчальної вибірки: а) різний час доби, б) ускладнені метеоумови, в) 

різний масштаб, різноманіття суден та ракурсів 

3. Процес тренування 

Тренування власної моделі штучного зору відбувалося в декілька етапів. Параметри 

виконаних тренувань зібрані в таблиці 3. Після кожного етапу тренування відбувався аналіз 
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отриманих результатів, та приймалося рішення щодо подальшого їх використання. Сірим 

кольором виділені ті етапи тренування, які були неуспішними через погіршення показників 

(табл. 3), та в подальшому не бралися до уваги. 

Таблиця 3.   Параметри виконаних тренувань за першими 8-ма етапами 

На першому етапі було виконано грубе тренування, всі зображення були масштабовані 

до розміру за шириною 416 пікселів, що уніфікує дані навчання. В подальшому для більш 

тонкого налаштування моделі, поступово розмір вхідного зображення збільшувався до 672 

пікселів за шириною, що є оптимальним для YOLOv8n. Тобто шляхом поступового 

збільшення розміру зображення, вдалося покращити загальні характеристики отриманої 

моделі. 

Тренування моделі протягом одного навчального циклу називається епохою. Вибір 

кількості епох є одним із ключових параметрів, що визначає якість та стабільність навчання 

моделей штучного зору. На першому етапі була виконана базова оцінка моделі. Тренування 

тривало протягом 100 епох. На подальших етапах навчання кількість епох значно скорочена, 

через ризик перенавчання. Також це дає можливість оперативно реагувати на погіршення 

параметрів. 

Параметр batch size визначає кількість зображень, що одночасно подаються моделі для 

обробки під час одного кроку оптимізації. Його вибір впливає на швидкість навчання, 

стабільність градієнтів і споживання обчислювальних ресурсів. На перших етапах цей 

Параметр Етап 

1 

Етап 

2 

Етап 

3 

Етап 

4 

Етап 

5 

Етап 

6 

Етап 

7 

Етап 

8 

Кількість епох (epochs) 100 50 30 20 20 25 10 30 

Розмір зображення (image 

size) 

416× 

416 

416× 

416 

416× 

416 

512× 

512 

640× 

640 

672× 

672 

672× 

672 

672× 

672 

Розмір пакету (batch size) 16 16 16 8 4 4 4 4 

Швидкість навчання 

(learning rate) 

0.01 0.003 0.003 0.001 0.000

5 

0.000

3 

0.000

1 

0.000

2 

Автоматична аугментація 

(Auto augment) 

rand rand rand rand rand ta-

warp 

— ta-

warp 

Аугментація типу мозайка 

(mosaic) 

1.0 1.0 1.0 1.0 0.5 0.4 0.0 0.5 

Аугментація типу 

змішування зображень 

(mixup) 

0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.3 

Заморожені шари (Frozen 

layers) 

0 0 10 0 0 0 0 0 

Випадкове вимикання 

нейронів (Dropout) 

0.0 0.0 0.0 0.0 0.1 0.15 0.05 0.15 

Випадкове стирання 

(Erasing) 

– – – – – – 0.4 0.4 

Аугментація типу 

копіювати-вставити (copy-

past) 

– – – – – – – 0.2 
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параметр становить 16, проте в подальшому він зменшується (8 та 4) для більш тонкого 

налаштування, а саме покращення деталізації та точності.  

Параметр learning rate (lr0) визначає початкову швидкість навчання нейронної мережі, 

тобто темп, з яким модель оновлює свої ваги під впливом помилки. Надто високе значення 

може призвести до нестабільності або перенавчання, тоді як занадто низьке – до дуже 

повільного навчання. На першому етапі було використано початкове значення lr0 = 0.01, що 

дало змогу моделі оцінити задачу в загальних рисах. На подальших етапах це значення 

зменшувалося з метою покращення деталізації. 

Для ускладнення та урізноманітнення процесу навчання, була використана техніка 

аугментації (mosaic, mixup, copy-paste, dropout, erasing). Розширення даних досягалося шляхом 

зміни зображення, а саме: розмиття контуру, комбінування зображень або додавання сірих 

відтінків. Особливо це корисно у разі, якщо пошук об’єктів буде відбуватися в реальному часі 

шляхом аналізу відео потоку. 

 Для оцінки якості моделі були використані метрики mean Average Precision (mAP) при 

різних порогах перекриття (IoU – Intersection over Union), а саме mAP@0.5 та mAP@0.5:0.95, 

що є загальноприйнятими показниками у задачах розпізнавання об’єктів. Це середнє значення 

точності (AP) по всіх класах, що обчислюється на основі порогу перетину прямокутників (IoU) 

не менше 0.5. IoU відображає ступінь перекриття між передбаченим та реальним 

обмежувальним прямокутником. Якщо прямокутники повністю співпадають, то IoU дорівнює 

1, якщо не перетинаються дорівнює 0. mAP@0.5 використовується як базовий індикатор якості 

локалізації об’єктів і їх класифікації. mAP@0.5:0.95, на відміну від неї, обчислюється як 

середнє значення точності при різних порогах IoU (від 0.5 до 0.95 з кроком 0.05) і дозволяє 

більш суворо оцінити точність виявлення та локалізації об’єкта. Для аналізу проведених 

досліджень, після кожного етапу навчання, була обрана найкраща модель на основі параметру 

mAP@0.5:0.95. Отримані в ході дослідження результати (табл. 4) свідчать про середній рівень 

якості для роботи моделі. 

Таблиця 4.  Результати навчання моделі на перших 8 етапах 

Параметр Етап 

1 

Етап 

2 

Етап 

3 

Етап 

4 

Етап 

5 

Етап 

6 

Етап 

7 

Етап 

8 

Epochs 100 50 30 20 20 25 10 30 

Epoch 78 45 28 19 18 25 10 16 

mAP@0.5 0.3748 0.3508 0.3601 0.3649 0.3501 0.3714 0.3752 0.3477 

mAP@0.5:0.95 0.3007 0.2868 0.2976 0.2967 0.2851 0.3040 0.3082 0.3008 

Precision 0.2888 0.3549 0.4108 0.3606 0.3642 0.3964 0.3246 0.3372 

Recall 0.5167 0.3986 0.3317 0.4392 0.4253 0.4174 0.4798 0.4653 

Box loss (val) 0.9225 0.9141 0.9229 0.8862 0.0061 0.0059 0.0061 0.8889 

Class loss (val) 1.8964 2.1515 2.1077 1.9097 2.0746 2.1155 2.1691 1.7754 

DFL loss (val) 1.0197 1.0123 1.0289 1.0429 1.1155 1.1204 1.1605 1.0959 

Оскільки модель призначена для розпізнавання ракурсу судна, параметр точність 

(Precision) відіграє дуже важливе значення. Тобто він показує, наскільки достовірно модель 

класифікує виявлені об’єкти, а саме: чи правильно віднесено судно до одного з восьми класів 

орієнтації (наприклад, «корма», «нос», «лівий борт», тощо). Саме через зниження цього 

параметру, 7-й та 8-й етап був виключений з подальших досліджень.  
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Параметр повнота (Recall) допомагає сформувати висновок про наявність пропущених 

об’єктів під час роботи моделі. Високе значення Recall свідчить про здатність моделі не 

пропускати об’єкти, однак не гарантує відсутність хибних спрацювань. Найвищий показник 

Recall був досягнутий на першому етапі (0.5167). Проте, загалом значення Recall залишалися 

нижчими за оптимальні для задач виявлення (0.6–0.9) 

Параметри Box loss (val) та Class loss (val) показують втрати при визначенні 

обмежувальних рамок та класифікації об’єктів. Чим менші ці параметри, тим краще працює 

уся модель. На сьомому етапі Box loss (val) були мінімальними і складали лише 0.0059. 

Оптимальним вважається значення менше 0.05. Тобто отримані результати свідчать про 

хорошу динаміку, але, на противагу Class loss (val), має дуже неприйнятно високу кількість 

помилкових класифікації (2.1155). DFL (Distribution Focal Loss) loss (val) допомагає моделі 

точніше розміщувати центр об’єкта, а також плавно та стабільно передбачити координати 

навіть при змінних умовах на зображенні. Отримане значення DFL loss (val) є високим 

(1.1204). Значення метрик втрат у процесі навчання повинні стабільно знижуватись. Їх 

критичне зменшення, а саме ситуація, коли значення показників втрат у процесі навчання 

швидко зменшується до дуже малих величин, свідчить про наближення моделі до стану коли 

модель може правильно розпізнавати нові, раніше невідомі дані після завершення навчання, 

без втрати якості внаслідок перенавчання. Натомість їх ріст або коливання може бути ознакою 

недотренованості, перенавчання або недоліків бази даних.  

На рис. 3 наведені приклади роботи моделі штучного зору на потоковому відео. Всі 

ідентифіковані об’єкти позначені рамкою, в лівому верхньому куті зазначений ракурс судна 

та вірогідність, з якою він визначається. 

  

  

Рис. 3 Приклад розпізнавання ракурсу суден 

Окрім вищезазначених параметрів, оцінку якості роботи моделі дає візуальний аналіз 

помилок. Їх можна поділити на дві основні групи: хибнопозитивні спрацювання, коли модель 

помилково вважає, що на зображенні присутній об’єкт певного класу, хоча насправді його там 

немає; хибнонегативні спрацювання, коли модель ігнорує об’єкти які насправді розташовані 
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на зображенні. На рис. 4 наведені зразки хибнонегативних (обведені в жовту рамку) та 

хибнопозитивних спрацювань (обведені в червону рамку). Модель часто плутає навколишнє 

середовище з реальними цілями, тому в подальшому набір навчальних даних варто доповнити 

Negative examples, які відображають різноманіття навколишнього середовища та портової 

інфраструктури. Наявність хибнонегативних спрацювань на чітких зображеннях говорить про 

значний дисбаланс класів, що призводить до ігнорування класів, які представлені меншою 

кількістю обʼєктів (port quarter, stern, forward). 

  

  

  

  

  

Рис. 4 Приклади хибнонегативних (обведені в жовту рамку) та хибнопозитивних 

спрацювань (обведені в червону рамку) 
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Висновки і перспектива подальшої роботи у даному напрямку 

Суднова система штучного візуального спостереження (ССШВС), створена в результаті 

проведеного дослідження, підтвердила свою перспективність як засіб автоматичного 

визначення ракурсу суден. Вона розглядається як допоміжний інструмент для підвищення 

безпеки морського судноплавства, особливо в умовах, коли традиційні засоби навігації 

виявляються ненадійними через зовнішні загрози чи технічні збої. Навіть груба оцінка ракурсу 

на основі зображення з камери дозволяє: підтвердити або спростувати інформацію від інших 

сенсорів; оперативно виявити зміни положення цілі відносно власного судна; підвищити 

ситуаційну обізнаність в умовах обмеженої або втраченої навігаційної інформації; 

забезпечити резервний канал контролю положення об’єкта для подальшої обробки в комплексі 

навігаційних систем. 

Навчання моделі YOLOv8n підтвердило її ефективність для нового застосування – 

автоматичного визначення ракурсу суден у реальному часі, що розширює можливості 

комп’ютерного зору в морській навігації. Під час експериментів YOLOv8n вдалося досягти 

mAP@0.5 до 0.3714 та точності 0.3964, але зниження повноти до 0.4174 і високі втрати 

класифікації до 2.1155 виявили нові виклики для комп’ютерного зору в морському контексті, 

закладаючи основу для оптимізації. 

Модель продемонструвала стабільні результати в частині локалізації об’єктів, однак 

стикається з труднощами у точній класифікації окремих класів суден. Причинами цього стали 

дисбаланс даних, відсутність достатньої кількості прикладів для деяких орієнтацій, а також 

складність виявлення великих суден на передньому плані. Попри це, система має значний 

потенціал як для цивільного, так і для оборонного застосування. 

Наступні кроки передбачають: збільшення обсягу навчальних даних, зокрема для класів 

із низькою представленістю; удосконалення процесів аугментації з урахуванням специфіки 

морських умов; оцінку ефективності системи у відкритому морі та в портових умовах. 

У довгостроковій перспективі, подібні системи можуть стати невід’ємною частиною 

навігаційного обладнання нового покоління, забезпечуючи незалежність від зовнішніх 

сигналів і підвищуючи стійкість до кібератак та технічних збоїв. 
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