Issue №28

Shipping and Navigation Issue-28-2018

Contents

A. V. Aleksishin, A. I. Burmaka Choice of course of deviation of ship taking into account law of distributing of vector's error

DOI: 10.31653/2306-5761.27.2018.10-15 | PDF

Abstract

In the article dependence of circular safe region of ship is explored on the law of distributing of probability of position vector’s error, which influences on the size of course of deviation of ship at his divergence with a dangerous target. It is presently offered more ten different forms of safe region of ship, although the safe region of ship of circular form is most often used. Therefore, this form of safe region from positions of dependence of its sizes from the closeness of law of distributing of position vector’s error is considered in the article. Its radius is dipping out description of circular safe region of ship, which is evened maximum – possible distance of the shortest rapprochement, which, as shown in work, is the sum of two constituents of different on the nature. First component determined which depends on the sizes of ship and other determined factors. The second constituent is stochastic and it is simply determined by the law of distributing of probability of position vector’s error, basic description of which there is matrix of its constituents.

The radius of stochastic constituent of circular safe region of ship gets out thus, that probability of hit of veritable place of ship in a region was near to 1, on condition that the center of circular safe region coincides with the place of ship. In other words, a circular region with a center in position must cover the veritable place of ship with probability near to 1. In work for implementation of this condition worked out an integral equation, in which in quality an unknown variable there is the radius of circular safe region of ship. So as in equalization an integral is certain, and a radius is in limits integration, integral equalization is regenerate to expression in the type of sum that allows defining the size of radius by the method of progressive approximations.

It is shown that the radius of circular safe region of ship depends on dispersions of constituents of position vector’s error, which are determined by the scale parameter of law of distributing, and in the case of distributing of position vector’s error on the mixed law of the first or second type on the size of radius the substantial parameter of law of distributing influences also.

Keywords: safety of navigation, safe region of ship, position vector’s error.

References
  1. Lamb W. G. Р. Calculation of the geometry of ship collision zones / Lamb W. G. Р. // The Journal of Navigation. – 1989. – 42, № 2. – Р. 298 – 305.
  2. Goodwin E. M. A Statistical Study of Ship Domains / Goodwin E. M. // The Journal of Navigation. – 1975. – 28, № З. – P. 328 – 341.
  3. Погосов С.Г. Береговые системы управления движением судов/ Погосов С.Г., Москвин Г.И. – М.: Судовождение и связь, 1976. – 54 с.
  4. Вагущенко Л.Л. Расхождение с судами смещением на параллельную линию пути / Вагущенко Л.Л. – Одесса: Феникс, 2013. – 180 с.
  5. Якушев А. О. Выбор оптимальной формы судовой безопасной зоны/ Якушев А. О. // Судовождение: Сб. научн. трудов./ ОНМА, Вып. 23. – Одесса: «ИздатИнформ», 2013 – С.157-162.
  6. Бурмака И.А. Управление судами в ситуации опасного сближения / И.А Бурмака., Э.Н Пятаков., А.Ю. Булгаков – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), – 2016. – 585 с.
I.A. Burmaka, PhD, S.S. Pasechnyuk Formalization of region of dangerous courses and speeds of vessels with their external process control of passing by

DOI: 10.31653/2306-5761.27.2018.16-23| PDF

Abstract

In the article dependence of circular safe region of ship is explored on the law of distributing of probability of position vector’s error, which influences on the size of course of deviation of ship at his divergence with a dangerous target. It is presently offered more ten different forms of safe region of ship, although the safe region of ship of circular form is most often used. Therefore, this form of safe region from positions of dependence of its sizes from the closeness of law of distributing of position vector’s error is considered in the article. Its radius is dipping out description of circular safe region of ship, which is evened maximum – possible distance of the shortest rapprochement, which, as shown in work, is the sum of two constituents of different on the nature. First component determined which depends on the sizes of ship and other determined factors. The second constituent is stochastic and it is simply determined by the law of distributing of probability of position vector’s error, basic description of which there is matrix of its constituents. The radius of stochastic constituent of circular safe region of ship gets out thus, that probability of hit of veritable place of ship in a region was near to 1, on condition that the center of circular safe region coincides with the place of ship. In other words, a circular region with a center in position must cover the veritable place of ship with probability near to 1. In work for implementation of this condition worked out an integral equation, in which in quality an unknown variable there is the radius of circular safe region of ship. So as in equalization an integral is certain, and a radius is in limits integration, integral equalization is regenerate to expression in the type of sum that allows defining the size of radius by the method of progressive approximations. It is shown that the radius of circular safe region of ship depends on dispersions of constituents of position vector’s error, which are determined by the scale parameter of law of distributing, and in the case of distributing of position vector’s error on the mixed law of the first or second type on the size of radius the substantial parameter of law of distributing influences also. Keywords: safety of navigation, safe region of ship, position vector’s error.

References
  1. Бурмака И.А., Калиниченко Г.Е., Кулаков М.А. Основные характеристики группы судов при внешнем управлении процессом судовождения// Судовождение: Сб. научн. трудов / ОНМА, Вып. 26. – Одесса: «ИздатИнформ», 2016 – С. 35-40.
  2. Булгаков А.Ю. Использование опасной области курсов двух судов для выбора допустимого маневра расхождения/ Булгаков А.Ю.// Водный транспорт. – 2014. №2 (20). – С. 12 – 17.
  3. Кулаков М. А. Процедура определения маневра расхождения изменением скоростей судов // Судовождение: Сб. научн. трудов / ОНМА, Вып. 27. – Одесса: «ИздатИнформ», 2016 – С. 112-118.
  4. Бурмака И.А. Управление судами в ситуации опасного сближения / И.А Бурмака., Э.Н Пятаков., А.Ю. Булгаков – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), – 2016. – 585 с.
L. L. Vagushchenko, A. A. Vagushchenko Enhancement of support for collision avoidance decisions

DOI: 10.31653/2306-5761.27.2018.24-34 | PDF

Abstract

The questions of perfection of onboard systems for avoiding collisions, the place of such system in the ship’s motion control system and the ways of its transformation into the Collision Avoidance Support System (CASS) are covered. This transformation in particular includes the definition of the main tasks of the CASS, the composition of its information provision, the criteria for the quality of collision avoidance manouvers, the development of methods for drawing up recommendations on safe passage by ships.

The list of tasks to be solved by the CASS, the composition of databases and knowledge bases of its information provision, the constitution of vessel’s static and dynamic information, which is needed to develop recommendations, are specified and a form for economical representation of this information in the form of a matrix is proposed.

One of the possible effectiveness criteria for evasive manouvers is examined, and one of the options for formally taking into account the requirements of COLREG-72 for safety, timeliness, decisiveness, and economy of actions for avoiding collisions is considered.

Information support tools are highlighted to facilitate the selection of effective combined two-step manouvers (CTM) for safe passing by several vessels in the dialogue mode of the operator with the system. For this purpose, it is proposed to use two representational models of situations. The basis of the first of them is the marks that reflect the limitations of targets on the CTM. When they are used, the CTM with the intended values of the parameters is selected by indicating by the cursor the defining point of this manouver. CTM is safe when its trajectory does not intersect any of the mentioned marks. The second model is intended to simplify the selection of CTM with a known beginning. It is based on the areas of the defining points of safe CTM in relation to all targets and the linear intervals of such CTM with the shortest distance from the own ship route. In addition, to simplify the choice of the parameters of the first operation of the CTM, it is recommended to display at the periphery of the screen of the system the polar diagram of safe velocity vectors that correspond to the start point of manouver. Getting this diagram is based on the known method of calculating of dangerous relative courses sectors of targets.

It is shown that the parameters of an effective CTM with a given angle of return to the route of a voyage can be found by the method of enumerating the variants of this manouver with the defining points belonging to their admissible set. The composition of information that can serve as a justification for recommended by the system evasive strategy is determined.

The practical use of collision avoidance tools offered in the article can help the OOW to choose an effective plan for safe passing by the targets in difficult conditions.  

Keywords: collision prevention, decision support, maneuvers quality.

References
  1. Бень А. П. Концептуальные основы создания систем поддержки принятия решений в судовождении / А. П. Бень // Искусственный интеллект. – 2012. – № 3. – С. 222-227.
  2. Вагущенко А. А. Методы облегчения выбора комбинированного маневра для расхождения с несколькими судами /А. А. Вагущенко //Судовождение. – 2016. – Вып. 26. – С.41-47.
  3. Вагущенко Л. Л. Расхождение с судами смещением на параллельную линию пути /Л. Л. Вагущенко – Одесса: Фенікс, 2013. – 150 c.
  4. Мальцев А. С. Интеллектуальные гибридные системы поддержки принятия решений при расхождении судов / А. С. Мальцев // Судовождение. – 2006. – Вып. 11.- С. 74-86.
  5. Chee Kuang Tam Collision risk assessment for ships / Chee Kuang Tam and Richard Bucknall // Journal of Marine Science and Technology. – 2010. – Volume 15, Number 3. – P. 257-270.
  6. Degre T. A collision avoidance system / T. Degre, X. Lefevre //The Journal of Navigation. – – 34. – P. 294-302.
  7. Pietrzykowski NAVDEC – navigational decision support system on a sea-going vessel / Z. Pietrzykowski, P. Borkowski, P. Wołejsza // Maritime University of Szczecin, Scientific Journals. – 2012. – 30(102). -P. 102–108.
  8. Totem COLREGS adviser. Электронный ресурс. http//:www.totemplus.com.
Ye. A. Vlasenko, N. N. Tsymbal Some features of drafting of cargo plan of containership

DOI: 10.31653/2306-5761.27.2018.35-41 | PDF

Abstract

By the features of loading of containership which complicate the calculation of preliminary cargo plan, there is the necessity of account of rotary press of ports at the loading or unloading in a few ports and account of forces of inertia, affecting loading at tossing. If a ship adopts a loading which will unloading by parts in a few successive ports, on every transition between ports his nautical state will be different, that will lead to the change of forces of inertia, which will undergo a loading during transition.

At the loading of containership with the subsequent unloading in a few ports in the holds of ship it is necessary to produce placing of loading taking into account the sequence of ports of unloading, providing access to necessary parties of loading, and also taking to account that all transient states of loading must suit on stability, landing and durability of ship, and forces of inertia, arising up at tossing, must were in possible limits.

It is shown that forming of initial loading must be begun with determination of the possible last loading before handing over of loading in the last port, and then be incrementally moved to the previous loading, while the initial loading in the last port of loading will not be got.

At the decision the set problem it is necessary to take into account communication between the loading of ship and parameters of her tossing, which determine descriptions of nascent angular accelerations and influence on the size of forces of inertia.

To minimize the size of force of inertia operating on a container at tossing of ship, to the required legitimate values it is possible besides placing of container yet and by diminishment of peak value of angle of roll, for what it is necessary to obtain a maximal difference between frequency of own vibrations of ship and seeming frequency of agitation. It is shown that seeming frequency of agitation is an out of control variable and its size can be only forecast on forthcoming transition, however much the size of frequency of own vibrations of ship depends on the loading of ship. Exactly the loading of ship determines the size of transversal initial metacentric height and moment of inertia of ship in relation to the longitudinal axis  X-X. If from the great number of possible loadings to choose that, for which the difference of frequencies has the maximal value, other things being equal it is possible to provide implementation of requirement of legitimate values of forces of inertia at tossing of ship.

Keywords: nautical safety of ship, loading of ship, force of inertia on tossing.

References
  1. Чепок А.О. Оптимизация загрузки судна тарно-штучными грузами в автоматизированных системах / Чепок А.О. // Проблемы техники: Научно-производственный журнал / ОНМУ, ХНУ – 2013. – № 4. – Одесса: Одесский национальный морской университет, 2013. – C. 44–51.
  2. Цымбал Н.Н. Формирование оптимизационной задачи проведения грузовых операций навалочных судов/ Цымбал Н.Н., Васьков Ю.Ю. // Судовождение. – 2004. – № 7. – С. 3 – 10.
  3. Николаева Л.Л. Способ формализации формы судовых грузовых помещений нестандартного типа / Николаева Л.Л., Гайченя А.В. // Автоматизация судовых технических средств. – 2010. – № 16. – С. 71-82.
  4. Власенко Е.А. Угловые ускорения, возникающие при качке судна/ Власенко Е.А.// Сучасні інформаційні та інноваційні технології на транспорті (MINTT-2018): Матеріали X Міжнародної наук.-практ. конф., 29-31 травня. 2018 – Херсон: ХДМА, 2018. – C. 96 – 99.
  5. Власенко Е. А. Определение максимального значения горизонтальной составляющей сил инерций, действующей на груз при качке судна/ Власенко Е. А., Бурмака И. А.// Science and Education a New Dimension. Natural and Technical Sciences, VI (18), Issue: 158, 2018.- С. 80 – 84.
I. I. Vorokhobin, V.G. Aleksichin, I. Y. Fusar Universal method of stochastic description of random error terms of navigation measurings

DOI: 10.31653/2306-5761.27.2018.42-47 | PDF

Abstract

The analysis of statistical these errors of the navigation measuring, got last thirty years in the model supervisions, showed that errors did not submit to the normal law of distributing, and the histograms of their selections contain the surplus number of members in extreme digits, that testifies to the positive excess of law of distributing. Therefore, as alternative to the normal law the models of the mixed laws of distributing of errors were offered, for which characteristic positive excess.

For providing of maximally possible exactness of observations of place of ship it is necessary to know the law of distributing of errors of the navigation measuring. However, at the limited sample size of statistical materials of errors it is not succeeded by standard procedure to define the law of their distributing, although there is possibility to estimate the central moments of distributing. Thus if the histogram of selection has a positive excess, it is possible to use decomposition of closeness of distributing of errors by the orthogonal polynomials Ermit, not having in the order of its analytical expression, and to apply him as closeness of distributing. 

 It is shown that the variety of laws of distributing of authenticity of random error terms, the feature of which there is the presence of positive excess, can be compatible by the use of orthogonal decomposition with the acquired values of central moments of higher orders. Decomposition of normal closeness of the rationed error in the row of Gramme – Sharle type A by the orthogonal polynomials Ermit is a classic result, however for the standard closeness of law to Gaus of the uncaptioned error in work certain coefficients of row of Gramme – Sharle type A, and led to orthogonal of the Ermit polynomials.

The got result allows offering the universal method of description of closeness of distributing of the uncaptioned casual size by its decomposition in the row of Gramme – Sharle type A, that provides maximal exactness of observation of place of ship at the unknown law of distributing of errors of measuring, that has a positive excess.

Keywords: navigation accident rate, laws of distributing of random error terms, orthogonal decomposition of closeness of distributing, the Ermyt’s polynomials. 

References
  1. Кондрашихин В.Т. Определение места судна / В.Т. Кондрашихин – М.: Транспорт, 1989. – 230с.
  2. Ткаченко А.С. Совершенствование методов контроля и прогноза места судна. Автореф. дис. канд. техн. наук: 05.22.13/ ОНМА. – Одесса, 2009. – 24 с.
  3. Астайкин Д.В. Оценка точности координат судна при избыточных измерениях/ Астайкин Д.В., Сикирин В.Е., Ворохобин И.И., Алексейчук Б.М. – Saarbrucken, Deutschland/ Германия: LAP LAMBERT Academic Publishing, 2017. – 274 с.
  4. Ткаченко А.С. Применение обобщенных пуассоновских распределений для описания навигационных погрешностей / А.С. Ткаченко, В.Г. Алексишин. // Судовождение. – 2008. – № 15. – С. 185 –189.
  5. Крамер Г. Математические методы статистики / Г. Крамер – М.: Мир. -1975. – 648 с.
A. V. Gaychenya Operative estimation of seaworthiness of ship by imitation design of his loading

DOI: 10.31653/2306-5761.27.2018.48-55 | PDF

Abstract

The method of the use of imitation design is offered for placing of cargo on to the holds of и ballast on to the tanks taking into account the operative control of parameters of nautical safety of ship, which provides the safe loading of ship.

The program with the module of interactive by introduction of parties of cargo was used for this purpose, accepted to transportation, and by the module of distributing cargo on to the holds of ship of and ballast on to the tanks. This software product was used for forming of previous cargo plan of ship taking into account the requirements of nautical safety. A case is considered, when to the loading 12 parties of cargo are accepted.

At placed to the cargo by the program express hatches information about parameters of ship. In the article the described procedure of the imitation placing of parties cargo on to the holds of ship, thus the parameters of landing of ship, parameters and general longitudinal durability change taking into account the accepted cargo.

For the control of general longitudinal durability at the design of loading of ship hatch graphics cutting forces and curving moments which are compared to maximum – the possible graphs, on the basis of what the conclusion of admission of loading is conducted on longitudinal durability. If current graphics cutting forces and curving moments are in possible scopes, the design of loading proceeds. Differently it follows to change placing or weight of the last party of the accepted cargo or conduct the change of present ballast by the redistribution of his amount on to the ballast tanks.

Conducting of taking ballast of ship for the redistribution of amount of ballast on to the tanks an imitation is foreseen by the loading routine of ship. With the help of procedure of taking ballast it is needed to choose on the computer chart of ship a tank for ballast operation, and then declare the type of operation: partial or complete reception of ballast, or partial or complete drainage to the tank.

As a result of imitation of taking ballast of ship, displacement of ships, static change moment in relation to ship planes, that conduces to the change of parameters of nautical safety of ship. Therefore, at the design of taking ballast of ship current information hatches on to the parameters of landing of ship and general longitudinal durability.

By the resulted method of design of loading of ship possibility of choice of optimum previous cargo plan of ship appears by the imitation program.

Keywords: nautical safety of ship, loading of ship, imitation design.

References
  1. Цымбал Н.Н. Формирование оптимизационной задачи проведения грузовых операций навалочных судов./ Цымбал Н.Н., Васьков Ю.Ю. // Судовождение. – 2004. – № 7. – С. 3 – 10.
  2. Чепок А.О. Оптимизация загрузки судна тарно-штучными грузами в автоматизированных системах. / Чепок А.О. // Проблеми техники: Научно-производственный журнал / ОНМУ, ХНУ – 2013. – № 4. – Одесса: Одесский национальный морской университет, 2013. – C. 44–51.
  3. Николаева Л.Л. Разработка метода оперативной оценки критериев мореходности судна. / Николаева Л.Л., Гайченя А.В., Соколов М.Ю.// Судовождение: Сб. научн. трудов. / ОНМА, Вып. 16. – Одесса: ИздатИнформ, 2009. – С.132-136.
  4. Николаева Л.Л. Способ формализации формы судовых грузовых помещений нестандартного типа / Николаева Л.Л., Гайченя А.В. // Автоматизация судовых технических средств. – 2010. – № 16. – С. 71-82.
  5. Гайченя А.В. Ввод в базу данных характеристик судна / Гайченя А.В. // Судовождение: Сб. научн. трудов. / ОНМА, Вып. 18. – Одесса: ИздатИнформ, 2010. – С. 64-67.
  6. Гайченя А.В. Ввод информации о танках в базу данных судна / Гайченя А.В. // Судовождение: Сб. научн. трудов. / ОНМА, Вып. 19. – Одесса: ИздатИнформ, 2011. – С. 71-75.
V. Dvoretsky, O. Shyshkin, S. Shyshkin Linear approximation of the maneuvering route by using of natural algorithms of optimization

DOI: 10.31653/2306-5761.27.2018.56-62 | PDF

Abstract

Discusses the principles of algorithm in the system of ensuring security of navigation based on biological approaches. In the last two decades during optimization of the difficult systems researchers apply the natural mechanisms of search of the best decisions all more often. Today scientific direction of Natural Computing is intensively developed uniting mathematical methods principles of natural mechanisms of making decision are stopped up in that. These mechanisms provide effective adaptation of flora and fauna to the environment during millions of years. The imitation of self-organization of ant colony makes basis of ant algorithms of optimization – new perspective method of natural calculations. The colony of ants can be examined as a multiagent system in that every agent (ant) functions autonomically on very simple rules. In a counterbalance to almost primitive behavior of agents, behavior of all system turns out to my surprise reasonable. In work the algorithm of calculation of a route of a ship with a maneuver based on linear approximation using the least squares method. The problem of linear approximation consists in finding the coefficients of the linear relationship, in which a function of two variables is minimum. To assess the quality of maneuvering in the presence of static obstacles use the ant optimization algorithm suitable for use in marine decision support systems in real-time. Important property of ant algorithms is unconvergence: even after the large number of iterations the great number of variants of decision is simultaneously investigated, because of whatever the protracted dwells are in local extremums. All of it allows to recommend application of ant algorithms for the decision of intricate combinatorics problems of optimization. The conducted computer experiments show that ant algorithms find the effective and safe routes of the following considerably quicker, than exact methods of combinatorics optimization. Efficiency of ant algorithms increases with the height of dimension of task of optimization.

Keywords: transport process, safety of navigation, ant optimization algorithm, technical means of navigation, a model of maneuvering.

References
  1. Вагущенко Л.Л. Поддержка решений по расхождению с судами / Л.Л. Вагущенко, А.Л. Вагущенко – Одесса: Феникс, 2010. – 296 с.
  2. Штовба С.Д. Муравьиные алгоритмы / Exponenta Pro. Математика в приложениях. № 4 (4), 2003. С. 70 – 75.
  3. Шишкин А.В., Шишкин С.А. Оптимизация маневра расхождения судов с помощью муравьиного алгоритма // Судовождение: Сб. научн. трудов / ОНМА, Вып. 26. Одесса: «ИздатИнформ», 2016, С. 157 – 165.
  4. Дворецкий В. А. Погрешности РЛС, оказывающие влияние на точность определения радиолокационного пеленга / В. А. Дворецкий // Матеріали наук. ‑ метод. конф. ²Морський транспорт: управління, економiка, безпека², – Одесса: ОНМА, 2010. – С. 55–57.
  5. Непомнящих В. А. Модели автономного поискового поведения // От моделей поведения к искусственному интеллекту / Под общ. ред. В. Г. Редько. М.: УРСС, 2006. С. 200 – 242.
Y. V. Kаzak, G. E. Kalinichenko Ship dynamic rotary motion models for navigational safety research

DOI: 10.31653/2306-5761.27.2018.63-69 | PDF

Abstract

It is shown that at sailing of ship in the compressed terms is achieved minimization of risks of origin of emergency situation at the use of dynamic model of rotatory motion of ship of the third order. Taking into account the use of this model procedure of determination of vector’s position error and forming of region of dangerous ships is considered at the external process control of divergence.

It is marked in work, that at the turn of ship one of reasons of appearance of vector’s error in relation to the next point of output of ship on a new course is the error of position angle of feather of helm, thus in the case of appearance of this error the resulted mechanism of forming of vector’s error.

It is shown in the article, that rapprochement of two ships can be analyzed by the region of dangerous courses, that is represented on the plane of courses of ships, thus overhead and lower by the scopes of region there are points which meet condition of equality distance of the shortest rapprochement and maximum – possible distance. Points between the scopes of region answer the courses of ships, at which distance of the shortest rapprochement of more small after maximum – possible distance, that characterizes dangerous rapprochement of ships.

In the case of determination of scopes of region of dangerous courses without taking into account inertia of ships at a turn ships will divide in the distance, that more small after maximum – possible distance. Therefore, for the account of inertia of turn it is necessary maximum – to advance possible distance by the proper amendment. The size of this amendment is simply determined by the dynamic model of rotatory motion of ship, and accordance of value of amendment with true is determined by the degree of adequacy of dynamic model of rotatory motion of ship to the real process of turn of ship. Thus, the use of model of turning of ship depends on the degree of accordance of dynamic model of rotatory motion of ship to the real process of his turn.

The most adequate dynamic model of rotatory motion of ship, which is described by differential equalizations of the third order, is considered in work.

It is marked that the turn of ship consists of two phases of laying of feather of helm. At first, on the first phase, position angle of helm which is contained in such position some time domain is conducted in the initial moment of time. Then position angle of helm is conducted in other side on that size of и inertia of turn of ship is extinguished. As a result, a ship goes out on the inflicted course, angular speed of turn diminishes to the zero, and the feather of helm is driven to the diametral plane of ship.

Keywords: safety of navigation, dynamic model of agility of ship, vector’s error, region of dangerous courses.

References
  1. Ворохобин И.И. Векториальные погрешности, возникающие при повороте судна/ Ворохобин И.И., Казак Ю.В. // Судовождение: Сб. научн. трудов. / ОНМА, Вып. 26. – Одесса: «ИздатИнформ», 2015 – С.
  2. Калиниченко Г.Е. Формирование области опасных курсов судов с учетом их динамических характеристик / Калиниченко Г.Е., Пасечнюк С.С. // Автоматизация судовых технических средств. – 2017. – № 23 – С. 28 – 33.
  3. Казак Ю.В. Влияние погрешности перекладки пера руля на точность поворота судна // Судовождение: Сб. научн. трудов. / ОНМА, Вып. 27. – Одесса: «ИздатИнформ», 2017 – С. 96-100.
  4. Вагущенко Л.Л. Судно как объект автоматического управления/ Л.Л. Вагущенко – Одесса: ОГМА, 2000. – 140 с.
A. Kamienieva, K. Kamieniev By additive algorithm for disposition of dangerous goods on container ship

DOI: 10.31653/2306-5761.27.2018.70-77 | PDF

Abstract

High competition in container shipping industry reinforces the utter importance of safe, timely and sound cargo delivery. In order to ensure those qualities preliminary stowage planning that ensures vessels’ seaworthiness components is a must. These include, among others, dangerous goods properties and compatibility. Nowadays stowage planning is done using stowage planning software. Although known programs do check dangerous goods stowage positions and compatibility they can’t allocate containers automatically. Therefore, automation of the process is considered relevant.

To ensure safety when compiling a stowage plan human factors must be taken into account. Human errors are responsible for most cases of marine accidents, therefore solutions capable of mitigating them are required. Stowage planning software does that on the preliminary planning stage by calculating parameters responsible for seaworthiness, such as metacentric height (GM), sagging and hogging moments etc. While the parameters provide useful data for any ship’s voyage planning, in container vessels’ case they are also highly accurate. The reason for that is set container positions in vessels’ holds, that allows to make accurate predictions of each unit’s center of mass. It is noteworthy that all known stowage planning software is closed source so its algorithms can’t be verified.

The article attempts to use a mathematical method for containers with dangerous goods allocation onboard of a ship. The attempt uses the additive algorithm to try and find allowable containers positions prior to loading. A mathematical model is built for dangerous goods stowage optimization.

 Boolean programming methodology is applied to the problem. The usage simplifies calculations as all variables can only have two values: “0” or “1”. The algorithm is of branch and bound design paradigm and its calculations are limited by operations of addition and subtraction. The main idea consists of a systematic enumeration of possible candidate solutions, but the enumeration procedure allows to eliminate the solutions it can prove are not optimal.

The results received demonstrate the possibilities of using the method for preliminary stowage planning.

Keywords: dangerous goods, container ships, additive algorithm.

References
  1. IMDG Code: Vol. 1 – CPI Group (UK) Ltd, Croydon, CR0 4YY, 2012. – 486 p.
  2. Комплексный метод загрузки судна тарно-штучными грузами с учетом инерционных сил качки: автореф. / А. О. Чепок – Одесса: ОНМА, 2014. – 22 с.
  3. Перевозка опасных грузов: уч. пособ. / С. А. Кузнецов, Ю. А. Шумилов, А.Н. Давидчук, В. А. Халупенко, А. В. Халупенко. – Одесса: Издательство ОНМА, 2006. – 32 с.
  4. Введение в исследование операций: В 2-х книгах. Кн.1. / Х. Таха. – М.: Мир, 1985. – 479 с.
  5. C# 0 и платформа  .NET 4 для профессионалов/ К. Нейгел, Б. Ивьен, Д. Глинн, К. Уотсон, М. Скиннер. – М.: Диалектика, Вильямс, 2011. –1440 с.
  6. Закон України «Про перевезення небезпечних вантажів» станом на 20 лист. 2012 р. / http://zakon4.rada.gov.ua/laws/show/1644-14.
V. Koshevyy, A. Shevchenko The use of ultra wideband technique’s for marine radiolocation’s tasks

DOI: 10.31653/2306-5761.27.2018.78-87 | PDF

Abstract

The reception antenna diagram side lobe’s level suppression algorithm for marine UWB-radar by means of antenna array with only a few tuning elements of antenna array is considered. The others no tuning elements of array are choosing for obtain a given velue of average side lobe level suppression and with given value of antenna directivity without using of numerical optimization procedures. The special algorithm of interaction of these no tuning elements for realizing superdirectivity properties is used. The structural diagram of array is presented. The efficiency of suggested design has been investigated.

Keywords: ultra-wide band, antenna array, weight coefficients, side lobes level,  partial diagram, superdirectivity.

References
  1. Scherbak, Ultra-wide band radiolocation. What is this? // Electronics, technology, business. Issue N3/2002.
  2. Shirman, V. Mandjos, 1981, Theory and technics of radar information processing under interferences. M. Radio I Svyaz, – Р. 416.
  3. Valderas, J.I. Suncho, D. Puente, C. Ling, X. Chen. Ultra-wideband Antennas (Design and Application) Imperial College Press.2011. P.194.
  4. Siviaak, D. McKeown, Ultra-Wide-bamd Radio Technology, John Wilay&Sons,2004, P.246.
  5. LiJ. Zhang, Y. Deng, Z. Zhou. Design of a Low-prifile Ultra-wideband Antenna Array Based on Planar Dipole Elements, IEEE Radar 2018, pp.0125-0128.
  6. Koshevyy V., Shershnova A., 2013, The formation of zero  levels of Radiation  Pattern linear Antennas Array with minimum quantity of controlling elements, 9 Int. Conf. on Antenna Theory and Techniques (ICATT-13), Odessa, Ukraine: рр. 264-265.
  7. Koshevyy, V. Lavrinenko, S. Chuprov, 1975, The efficiency of quasi-filter analysis. «RIPORT », VIMI. №2, – p. 7.
  8. Koshevyy, A. Shevchenko, 2016, The research of non- tuneable part of antenna array amplitude distribution for side lobes suppression efficiency. 2016 International Conference Radio Electronics & Info Communications (UkrMiCo’2016), National Technical University of Ukraine “Kyiv Polytechnic Institute”, Kyiv, Ukraine, pp. 156 – 160.
  9. Koshevyy, A. Shevchenko, 2017, Radiation Pattern of Linear Antenna Array With Control of Directivity and Supper- Selectivity Properties//XI International Conference on Antenna Theory and Techniques (ICATT), Kyiv, Ukraine, pp. 165 – 168, 2017.
  10. Koshevyy, A. Shevchenko, 2018, Antenna array with superdirectivity properties. International Conference on Electrical, Electronics, Computer, Communication, Mechanical and Computing (EECCMC) – 2018, Priyadarshini Engineering College, Vellore District, Jamil Nadu, India.
  11. Koshevyy V., Pashenko O., Improved compound multiphase waveforms with additional amplitude modulation (periodic mode) for marine radars. The second International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo’2017), 11-15 September 2017, Odessa, Ukraine: рр. 1-6.
  12. Huang Yi, Boyle K., Antennas, From Theory to Practice. Wiley, 2008: Р.
  13. Hansen R.C., 1981, Some New Calculations on Antenna Superdirectivity, Proceeding of the IEEE, Vol. 69, No. 10: рр. 1365-1366. (Oct. 1981).
  14. Newman E. H., Richmond J.H., Walter C. H., Array size reduction using superdirectivity, AP – S Session 108, 1550: рр. 331-334 (June 21, 1976).
  15. Koshevyy V., Lavrinenko V., 1981, Target selection on the base of discret structure with minimum number of tuned elements. “Izvestia VUZ Radioelectronika”, vol. 24, 4: рр. 105 – 107.
  16. Koshevyy, 1982, Moving target systems indication synthesis with the inverse matrix size restrictions. – «Izvestia VUZ. Radioelectronika», т.25, № 3, рр. 84-86.
  17. Koshevyy, 1981, Some Limited Relations for Cross-Ambiguity Function of Finite Signals, Radio Engineering and Electronics, Vol. 26. Pp. 2588-2599. Dec. 1981.
  18. Koshevyy, 1983, Optimum Properties of One Stage (Single) MTI Canceller, Radio Engineering, N7, pp. 64-66, Jul.1983.
O.F. Kryvyi, M.V. Miyusov Mathematical models of hydrodynamic characteristics of the ship’s propulsion complex for any drift angles

DOI: 10.31653/2306-5761.27.2018.88-102 | PDF

Abstract

The main among non-inertial forces on the hull are hydrodynamic forces. Without taking these forces into account, no adequate mathematical model of the dynamics and statics of the propulsion complex of a ship is possible in solving various optimal control problems in navigation, in particular: acceleration and deceleration, maneuvering, course stabilization, positioning, divergence and others. Such models are necessary to predict the behavior of the vessel at various combinations of the parameters of the controls of the vessel (rudder positions, fuel rod, the area and setting angle of the sails, etc.). Especially important is the presence of adequate mathematical models in the development and design of shipboard automatic control systems and simulators. In this work, an effective nonlinear mathematical model of hydrodynamic forces and the moment of the propulsion complex of the vessel in plane motion for any drift angles at various angular velocities is obtained. The construction of the model is based on the physical and mathematical properties of hydrodynamic forces such as parity or oddness, periodicity, differentiability. Analytical dependences for hydrodynamic characteristics contain hydrodynamic constants of polynomial models, the method of obtaining of which has now received significant development. The construction of the model is based on the recovery of the hydrodynamic characteristics of the vessel according to their decomposition into the Maclaurin series, contains infinitely differentiable trigonometric functions and simple expressions for the hydrodynamic constants. A numerical analysis of the obtained dependences was carried out, in particular, they were compared with polynomial models for small drift angles, known trigonometric models and experimental results for large drift angles. A good agreement between the proposed mathematical model and polynomial models, existing non-linear trigonometric models and experimental data has been established. The flat and three-dimensional graphs of the hydrodynamic characteristics of the propulsion complex of the vessel are constructed for any drift angles for various values of the relative angular velocity.

Keywords: planar motion of a ship, hydrodynamic forces, hydrodynamic characteristics, hydrodynamic constants, polynomial and non-linear models.

References
  1. Кривой А.Ф., Миюсов М.В. Математическая модель плоского движения судна при наличии ветродвижителей // Судовождение: Сб. научн. трудов./ ОНМА, Вып. 26. – Одесса: «ИздатИнформ», 2016 – С. 110-119.
  2. Миюсов М.В. Режимы работы и автоматизация пропульсивного комплекса теплохода с ветродвижителями / М.В Миюсов//Одесса: ОГМА, ОКФА – 1996.‑ 256 с.
  3. Кривий О.Ф. Методи математичного моделювання в задачах судноводіння: навчальний посібник / О.Ф. Кривий//Одеса: ОНМА, 2015. – 86 с.
  4. Соболев Г.В. Управляемость корабля и автоматизация судовождения / Г.В. Соболев// Л.: Судостроение, 1976. – 477 с.
  5. Справочник по теории корабля. В 3-х томах. /Под ред. Я.И. Войткунского. – Л.: Судостроение, 1985. – 765 с.
  6. Першиц Р. Я. Управляемость и управление судном/ Р.Я. Першиц// Л.: Судостроение.– 1983.‑ 272 с.
  7. Васильев А. В. Управляемость судов: учеб. пособие / А. В. Васильев.- Л.: Судостроение, 1989. – 328 с. Анисимова Н.И. Позиционные гидродинамические характеристики судов при произвольных углах дрейфа// Судостроение.‑ 1968.­ №5.­С. 4-8.
  8. Анисимова Н.И. Позиционные гидродинамические характеристики судов при произвольных углах дрейфа// Судостроение.‑ 1968. ­№5.­ С. 4-8.
  9. Юдин Ю.И. Математические модели плоскопараллельного движения судна. Классификация и критический анализ/ Ю.И. Юдин, И.И. Сотников // Вестник МГТУ ‑ т. 9, № 2. ‑ 2006 г. ‑ С. 200-208.
  10. Ogawa A. On the Mathematical Model of Maneuvering Motion of Ship/ Ogawa A., Kasai H// International Shipbuilding Progress.‑ 1978.‑ Vol. 25, № 292, pp. 306‑319.
  11. Kose K., Yumuro A., Yoshimura Y. Concrete of Mathematical model for ship manoeuvrability// 3rd Symposium on Ship Maneuverability, Society of Naval Architects of Japan.‑ 1981, pp. 27-80 (in Japanese).
  12. Inoe S. Hydrodynamic derivatieves on ship manoeuvring/ S. Inoe, M. Hirano, K. Kijima// Int. Shipbuilding Progress. – 1981. – V. 28, ‑ № 321, pp. 67.
  13. Kijima K. Prediction method for ship manoeuvring performance in deep and shallow waters. Presented at the Workshop on Modular Manoeuvring Models/ K. Kijima// The Society of Naval Architects and Marine Engineering. ‑ 1991.‑ v. 47.‑ 121‑130 pp.
  14. Ming-Chung Fang. A nonlinear mathematical model for ship turning circle simulation in waves. /Ming-Chung Fang, Jhih-Hong Luo, Ming-Ling Lee.// Jornal of Ship Research.‑ 2005.‑ Vol. 49.‑ №2., 69-79pp.
  15. Yoshimura,Y., Ma,N.:Manoeuvring Prediction of of Fishing Vessels, proc. of MARSIM’03, 2003, pp. RC-29-1-RS-29-10.
  16. Yoshimura, Y. Masumoto. Hydrodynamic Database And Manoeuvring Prediction Method With Medium High-Speed Merchant Ships And Fishing// International Conference on Marine Simulation and Ship Manoeuvrability 2012 (MARSIM 2012) pp.494-504.
  17. Yasukawa, Y. Yoshimura. Introduction of MMG standard method for ship maneuvering predictions//J Mar Sci Technol (2015) 20:37–52 DOI 10.1007/s00773-014-0293-y
M. A. Kulakov, A.Yu. Kozachenko, V.V. Stepanenko Hybrid control system by cooperation of vessels in situation of their dangerous rapprochement

DOI: 10.31653/2306-5761.27.2018.103-108 | PDF

Abstract

In work for warning of collisions of two и three ships the structure of the two-tier hybrid system of coordination which is built on the existent system of the binary coordination COLREGis offered in the situations of their dangerous rapprochement.

In case of occurring of situation of dangerous rapprochement of two ships the first level is used, and the second level is used at dangerous rapprochement of three ships.

In quality the first level in the hybrid system of coordination existing recommends COLREG. If there is the situation of dangerous rapprochement of two ships cooperation which is determined by a binary coordinator and as a result of which ships execute the general maneuver of divergence takes place. At first level a coordinator analyses relative position of ships which are dangerously drawn together, takes into account their statuses and addresses them coordinating signals. These signals specify mutual duties to each of ships, in obedience to which ships choose strategy of divergence, when it is required that first from ships kept the parameters of motion, and the second ship conducted the maneuver of divergence, or both ships coordinated execute the maneuvers of divergence.

In the situation of dangerous rapprochement of three ships it is suggested to form the second level of the hybrid system of coordination as follows. At presence of three ships which are dangerously drawn together, additionally there are situation indignations which in general case can take on a value from 0 to 2. The second level of the hybrid system of coordination, which for such situation of rapprochement forms the additional signals of coordination also, is therefore used. A coordinator addresses to the base ship the signals of coordination, which determine his conduct in relation to the second and third ships, that his type of maneuver of divergence is determined.

If the signals of coordination in relation to both ships coincide and require yielding, a base ship must concede a way to the ships, with which cooperates, by the maneuver of divergence general for both ships or two successive maneuvers for each of them. In time, when the signals of coordination require from a base ship to keep unchanging a course and speed after the relation of both ships, a base ship executes this requirement on condition that both targets execute the foreseen maneuvers of deviation.

A numeral example is resulted in completion of the article.

Keywords: safety of navigation, cooperation of vessels, binary coordination, hybrid system of coordination.

References
  1. Statheros Thomas. Autonomous ship collision avoidance navigation concepts, technologies and techniques / Statheros Thomas, Howells Gareth, McDonald-Maier Klaus. // J. Navig. 61, № 1, p. 129 – 142.
  2. Lisowski J. Safety of navigation based – mathematical models of game ship control/ Lisowski J. // Journal of Shanghai Maritime University. – – No 104, Vol. 25. – Р. 65 – 74.
  3. Мальцев А. С. Маневрирование судов при расхождении. – Одесса: Морской тренажерный центр, 2002. – 208 с.
  4. Пятаков Э.Н. Взаимодействие судов при расхождении для предупреждения столкновения / Пятаков Э.Н., Бужбецкий Р.Ю., Бурмака И.А., Булгаков А.Ю. – Херсон: Гринь Д.С., 2015. -312 с.
  5. Бурмака, И.А. Экстренная стратегия расхождения при чрезмерном сближении судов / Бурмака И.А., Бурмака А.И., Бужбецкий Р.Ю. – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), 2014. – 202 с.
T. Y. Omelchenko, V.V. Kaliuzhniy, A.V. Borodulin Forms of veritable and relative trajectories of divergence of ship

DOI: 10.31653/2306-5761.27.2018.109-119 | PDF

Abstract

The forms of veritable and relative trajectories of divergence are considered. It is shown that at speed of ship of greater speed the whole forms of veritable and relative trajectories coincide. For a case, when speed of ship less speed of target certain dependence of form of relative trajectory on the form of veritable trajectory.

So as the forms of veritable trajectory get out for divergence, and their parameters depend on the form of relative trajectory of divergence, communication of forms of relative and veritable trajectories of divergence is considered. It is shown that two forms of veritable trajectory of standard strategy of divergence are and four forms of relative trajectory of divergence can answer them in general case.

Therefore, in work the reflection of two elementary forms of veritable trajectory of divergence of ship is considered deviation to the right and to the left in the great number of forms of relative trajectory of divergence.

If speed of ship more large to speed of target, regardless of side of veritable deviation the forms of veritable and relative trajectories coincide, that direction of veritable deviation, as well as direction of veritable output on a previous course coincide with the proper relative directions. It is conditioned proportional dependence of relative course on a veritable course for the case of speed of ship of target larger from speed.

In time, when speed of ship more small to speed of target, dependence of relative course on a veritable course has both the intervals of growth and intervals of falling. In this communication accordance disappears between a relative course and veritable course. Therefore, can answer the interval of growth of veritable course, as interval of growth, so interval of falling of relative course. It is just for the cases of veritable deviation, both to the right and to the left, that shows the ambiguous reflection of two forms of veritable trajectory of divergence of ship in the great number of four forms.

In the article four examples of reflection of form of veritable trajectory of divergence by deviation are resulted to the right in each of forms of relative trajectory of divergence. 

Similar results are got for the elementary form of veritable trajectory of divergence of ship deviation of course to the left. It is shown in both cases, that size of interval of growth, as well as the interval of falling of relative course is determined by the relation of speeds of ship and target.

Keywords: safety of navigation, warning of collision of vessels, form of veritable and relative trajectories of divergence.

References
  1. Цымбал Н.Н. Гибкие стратегии расхождения судов / Цымбал Н.Н., Бурмака И.А., Тюпиков Е.Е. – Одесса: КП ОГТ, 2007. – 424 с.
  2. Бурмака И.А. Управление судами в ситуации опасного сближения / И.А Бурмака., Э.Н Пятаков., А.Ю. Булгаков – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), –2016 – 585 с.
  3. Мальцев А. С. Учет маневренных характеристик для обеспечения безопасности плавания / Мальцев А. С. // Судостроение и ремонт. – 1989. – №5. – С. 29-31.
  4. Мальцев А. С. Маневрирование судов при расхождении / Мальцев А.С. – Одесса: Морской тренажерный центр, 2002. – 208 с.
  5. Бурмака, И.А. Экстренная стратегия расхождения при чрезмерном сближении судов / Бурмака И.А., Бурмака А.И., Бужбецкий Р.Ю. – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), 2014. – 202 с.
Y. A. Petrychenko, O.A. Petrychenko Development of ship informative collision avoidance system

DOI: 10.31653/2306-5761.27.2018.120-130 | PDF

Abstract

The collision avoidance system ships, which allowі to identify the initial situation of dangerous rapprochement in accordance with the COLREG requirements and expect the parameters of strategy of divergence of ships, is considered.

At dangerous rapprochement of ships at first it is needed to define their mutual duties which respond to request COLREG, and then in the case of necessity to choose the parameters of safe maneuver of divergence. Therefore, for the collision avoidance system ships the algorithms of cooperation of ships in the process of divergence in accordance with the COLREG requirements were developed. After determination of region of mutual duties ships choose the maneuver of divergence, for determination of parameters of which the before got expressions were used.

In work the imitation program is considered for testing of the collision avoidance system ships, which contains the module of forming of initial situation of dangerous rapprochement and module of playing of the got maneuver of divergence for verification of correctness of work of the collision avoidance system ships.

For forming of initial situation of dangerous rapprochement of ships a course and speed of base ship and parameters of motion of purpose is entered in the imitation program. Introduction of initial data of situation of dangerous rapprochement is completed by the choice of parameters of relative position, that to bearing and distance.

The module of determination of mutual duties of ships according to the COLREG requirements uses the algorithms of binary coordination, which represent the conduct of pair of ships in the case of their dangerous rapprochement, both at beautiful and at the reduced visibility.

With the help of the imitation program was generated situations of dangerous rapprochement, which the collision avoidance system ships identified within the framework of COLREG and defined the conduct of ships for the safe maneuver of divergence. As a result of playing of these maneuvers made sure of their correctness, because ships cleanly divided in the inflicted distance.

The results of design of the imitation program confirmed correctness of the work system and showed expedience of its use.

 

Keywords: safety of navigator, process of divergence of vessels, collision avoidance system, imitation design.

References
  1. Мальцев А. С. Маневрирование судов при расхождении / Мальцев А.С. – Одесса: Морской тренажерный центр, 2002. – 208 с.
  2. Цымбал Н.Н. Формализация МППСС-72 в части координации взаимодействия судов при расхождении/ Цымбал Н.Н. Бужбецкий Р.Ю. // Судовождение. – 2006. – № 12. – С. 124 – 129.
  3. Сафин В.И. Использование маневра изменения скорости для предотвращения столкновения судов/ Сафин В.И., Тюпиков Е.Е. // Судовождение. – 2005. – № 10. – С. 143-147.
  4. Бурмака И.А. Применение численных методов для расчета времени начала уклонения судна при расхождении/ Бурмака И.А. // Судовождение: Сб. научн. трудов, ОНМА. – Вып. 6. – Одесса: ФЕНIКС, 2003 – С. 27-31.
  5. Цымбал Н.Н. Гибкие стратегии расхождения судов/ Цымбал Н.Н., Бурмака ИА., Тюпиков Е.Е. – Одесса: КП ОГТ, 2007. – 424 с.
  6. Петриченко Е.А. Учет линейной навигационной опасности при расхождении судов/ Петриченко Е.А.// Автоматизация судовых технических средств. – 2003. – № 8. – С. 72-76.
  7. Пятаков Э. Н. Взаимодействие судов при расхождении для предупреждения столкновения / Пятаков Э. Н., Бужбецкий Р. Ю., Бурмака И. А., Булгаков А. Ю. – Херсон: Гринь Д. С. – 2015. – 312 с.
  8. Бурмака И.А. Управление судами в ситуации опасного сближения / И.А Бурмака., Э.Н Пятаков., А.Ю. Булгаков – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия). – 2016. – 585 с.

 

I. M. Petrov Improvement of information processes in the service ergatic systems on the basis of databases

DOI: 10.31653/2306-5761.27.2018.131-140 | PDF

Abstract

In article problems of improvement of the information processes (IP) promoting increase of efficiency of service of the vessel in port reveal. The organization of service is considered as the Service Ergatic System (SES) “person-technician-environment”. At the same time the operator SES, i.e. the sea agent, the forwarding agent acts as the subject of work. Quality and availability of information, convenience of its representation and use in daily activity is regarded as of paramount importance. Relevance gives to article the output that development of the Data Bases (DB) for SES and management systems them remained unaddressed so far.

Achievement of the goal of optimization of IP SES is reached by the solution of problems of determination of structure of indicators of the DB, search of opportunities of their description, the choice of methods of their organization, ensuring access to the DB semantic communications of data, the thesaurus, logical and physical structures.

Information support of SES is classified on external – data preparation and operating by them out of the computer, and internal – data processing in the computer, and is implemented in the form of file system or in the form of the DB which is one of the IC component – the data bank.

  Frame of work is limited to creation of the DB for SES. As adequate tools structural analysis is selected and means of DFD (Data Flow Diagrams) are used. As the main DFD components external entities are considered; subsystems; processes; drives, data streams. It is established that information process “Agency Service” has external limits: SHIPOWNER; VESSEL; AGENT; PORT. As a result of decomposition of problems of information processing drives of data are selected: DOCUMENTS; VESSEL CALL; VESSEL. Contents “VESSEL” are presented in the form of two DB − “VESSELS” and “SHIPOWNER. DB “DOCUMENTS” are standard forms of documents in electronic form. The offered structure and interrelation of the DB is the problem definition for programmers.

Use of the offered information support of IP in SES allows to provide efficiency when forming the document package on vessel call.

 

Keywords: Service Ergatic System, sea agent, forwarding agent, the ergatic function, information flows, database, structural analysis.

References
  1. Климов Е.А. Психология профессионального самоопределения / Е.А. Климов. – М.: Изд. центр «Академия», 2010. – 304 с.
  2. Пряжникова Е.Ю. Психология труда. – 5-е изд., стер. / Е.Ю. Пряжникова, Н.С. Пряжников. – М.: Изд. центр «Академия», 2009. – 480 с.
  3. Воевудский Е.Н. Управление системой обслуживания судов в портах/ Е.Н. Воевудский. – М.: «Транспорт», 1983. – 298 с.
  4. Уткин В. Б. Информационные системы в экономике: Учебник для студ. высш. учеб, заведений / В.Б. Уткин, К.В. Балдин. — М.: Изд. центр «Академия», 2004. — 288 с.
  5. Корнеев В. В. Базы данных. Интеллектуальная обработка информации / В.В. Корнеев, А.Ф. Гарев, С.В. Васютин. — М.: Нолидж, 2000. – 372 с.
  6. Системы управления базами данных и знаниями / Под ред. А. Н. Наумова. — М.: Финансы и статистика, 1998 – 197 с.
  7. Дейт К. Дж. Введение в системы баз данных. 8-е изд. / К.Дж. Дейт. – М.: Вильямс, 2005 — 1328 с.
  8. Райордан Р. Основы реляционных баз данных / Р.Райордан. – М.: Русская редакция, 2001. – 394 с.
O. Pipchenko, S. Kopanskiy, V. Shevchenko Mathematical modeling of an ultra large container vessel using sea trials results

DOI: 10.31653/2306-5761.27.2018.141-151 | PDF

Abstract

As for today, modern container fleet keeps growing in size and capacity. For example, the container ship MSC Oscar with a length of 395 meters, a width of 59 meters and a draft of 16 meters, with a capacity of 19,224 TEU was launched in 2015. Despite the fact that the total number of navigational accidents (collisions, piles, groundings) has decreased in the last decade, emergency cases involving large-tonnage vessels are quite frequent. At the same time, according to the results of AGCS (Allianz Global Corporate & Specialty), the loss of a container ship with a cargo capacity of 19,000 TEU could cost as much as 1 billion US dollars. Obviously, with the increase in the size of ships, the problem of ensuring their navigation safety in narrow waters becomes even more critical. Mathematical modelling and simulation is a necessary process involved into design and operation of ships and port facilities. At the same time, physical modelling using scaled models is time consuming and expensive, which, if necessary, is performed at the final design stage. Proper mathematical modelling helps to find out limitations and possible problems or look for optimal solutions at early design stage as well as in the subsequent design process.

A manoeuvring model of an ultra large container vessel equipped with single screw fixed pitch propeller and semi-balanced spade rudder is represented in the paper. In order to check model’s validity simulated data had to be compared with trial report data, which was obtained in ballast condition with significant trim. In such circumstances model coefficients cannot be calculated by known methods and have to be corrected as per trial data. The correction algorithm with a specifically developed objective function obtained as a result of this study are given in the paper.

Keywords: vessel maneuvering, mathematical model, ultra large container vessel, sea trials.

References
  1. ABS Guide for Vessel Maneuverability, 2006
  2. Allianz Global Corporate & Safety and Shipping Review 2016. http://www.agcs.allianz.com/
  3. Fossen T. I. Marine Control Systems. Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles / T. I. Fossen– Marine Cybernetics, Trondheim, Norway, 2002 – 570 p.
  4. Ho-Young Lee. The Prediction of ship’s manoeuvеring performance In initial design stage / Ho-Young Lee, Sang-Sung Shin // Practical Design of Ships and Mobile Units. Elsevier Science, 1998. – 7 p.
  5. IMO MSC 76/23, “Resolution MSC.137 (76), Standards for Ship Manoeuvrability,” Report of the Maritime Safety Committee on Its Seventy-Sixth Session-Annex 6, 2002.
  6. Kijima, On a Prediction Method of Ship Manoeuvring Characteristics/Kijima, K., Tanaka, S. Furukawa, Y. and Hori, T. // Proc. of MARSIM-93, Vol.1, 1993. – pp.285-294.
  7. MAERSK SIRAC – Sea Trial results. Hyundai Heavy Industries. 2015. – 15 p.
  8. Perez T. Mathematical Ship Modeling for Control Applications. (Technical Report) / T. Perez, Blanke –DTU Technical University of Denmark, 2003. – 22 p.
  9. The Manouvering Committee. Final Report and Recommendations to the 24th ITTC, 2005. – 62 p.
  10. Yasukawa Introduction of MMG standard method for ship maneuvering predictions / Yasukawa H., Yoshimura Y. // Journal of Marine Science&Technology (2015)20, 2015 – pp. 37–52.
  11. Yoshimura Hydrodynamic database and manoeuvring prediction method with medium high-speed merchant ships and fishing vessels. / Yoshimura Y., Masumoto Y. // International MARSIM Conference. 2012 – pp.494–503.
  12. Вагущенко Л.Л. Системы автоматического управления движением судна. 2-е изд., перераб. и доп. / Л.Л. Вагущенко, Н. Н. Цымбал– Одесса: Латстар, 2002. – 310 с.
  13. Гофман А. Д. Движительно-рулевой комплекс и маневрирование судна. Справочник / А. Д. Гофман– Л.: Судостроение, 1988. – 360 с.
  14. Першиц Р. Я. Управляемость и управление судном. – Л.: Судостроение, 1983, 272 с.
  15. Пипченко А. Д. Уточнение математической модели ходкости контейнеровоза класса ULCS по результатам испытаний / Пипченко А. Д., Копанский С. В., Шевченко В. А. // Судовождение: Сб. научн. трудов./ ОНМА, Вып. 27. – Одесса: «ИздатИнформ», 2017 – С. 169-176.
  16. Справочник по теории корабля. В трех томах / [под ред. Я.И. Войткунского] – Л.: Судостроение, 1985.
E. N. Pjatakov, V.E. Pjatakov, K.Ya. Stankevich Coordination of manoeuvres of a few vessels’ passing

DOI: 10.31653/2306-5761.27.2018.152-158 | PDF

Abstract

The modern system of binary coordination which is realized in COLREG does not respond to request law of the necessary variety Eshbi, through what possible existence of situations of dangerous rapprochement, situation indignation of which cannot be compensated by the binary coordination COLREG. The law of the necessary variety Eshbi is executed, if the system of binary coordination foresees indemnification of possible situation indignation in the case of standard divergence by the following methods: by the general maneuver of both ships or maneuver of ship with greater speed.

These methods of indemnification of situation indignation are used in the first region of mutual duties of ships of standard divergence. By the first method situation indignation is compensated by two active ships. In this case it is necessary concordance of maneuvers of divergence of both ships, which provides the increase of distance of the shortest rapprochement in the case of implementation of maneuvers of divergence of ships. It takes place for ships which are drawn together on meeting courses, at the change of their courses in one side (for example, increase of courses of both ships). In the case of rapprochement of ships on passing courses for coordination of maneuvers of divergence necessary change of courses of ships in different sides, for example, one ship multiplies a course, and other ship – diminishes a course. The change of distance of the shortest rapprochement is determined by the constituent of total speed of ships, what orthogonal to the line to bearing. In the first method this constituent always more large zero, that is multiplied distance of the shortest rapprochement.

The second method foresees indemnification of situation indignation by one ship, that the maneuver of divergence is executed by one of ships, while other ship keeps unchanging it course and speed, therefore in this case there is no necessity in coordination of their cooperation. If the second region of mutual duties of ships was realized, situation indignation is compensated by urgent divergence.

In work the also offered system of coordination at dangerous rapprochement three ships, which takes into account the requirements of law of the necessary variety Eshbi, which foreseen four regions of mutual duties of ships.

The system of coordination of cooperation of three ships is the universal system of coordination at dangerous rapprochement two and three ships, which responds to request law of the necessary variety Eshbi. At divergence of two ships the system of coordination of cooperation of three ships is transformed in the system of binary coordination.

Keywords: safety of navigation, warning of collisions, concordance of cooperation of a few vessels.

References
  1. Пятаков Э.Н. Оценка эффективности парных стратегий расходящихся судов/ Пятаков Э.Н., Заичко С.И. // Судовождение. – 2008. – № 15. – С. 166 –171.
  2. Пятаков Э.Н. Совершенствование методов координации судов при расхождении. Автореф. дис. канд. техн. наук: 05.22.13/ ОНМА. – Одесса, 2008. – 23 с.
  3. Заичко С.И. Возможности синтеза системы формирования стратегий расхождения группы судов/ Заичко С.И., Пятаков Э.Н. // Судовождение. – 2006. – № 12. – С. 63 – 66.
  4. Пятаков Э.Н. Требование к процедуре формирования второго уровня иерархической системы управления взаимодействием судов / Пятаков Э.Н. // Судовождение. – 2007. – № 13. – С. 145 – 148.
  5. Пятаков Э.Н. Формирование системы бинарной координации судов с учетом закона необходимого разнообразия Эшби // Автоматизация судовых технических средств: науч. -техн. сб. – 2016. – Вып. 22. Одесса: НУ “ОМА”. – С. 75 – 78.
  6. Пятаков Э. Н., Копанский С. В., Волков Е. Л. Координация безопасного расхождения трех судов // Судовождение: Сб. научн. трудов. / ОНМА, Вып. 27. – Одесса: «ИздатИнформ», 2017 – С.
O. O. Raynov, V. O. Bobyr Uncertainty of measurement in ship’s ergative functions

DOI: 10.31653/2306-5761.27.2018.159-175 | PDF

Abstract

Based on the “Guide to the Expression of Uncertainty in Measurement”, published by the International Organization for Standardization, “measurement uncertainty” is a measure of confidence in the measurement results. The harmonization of national and international requirements has led to the need to ensure uniform assessment of measurements in the navy. According to this manual, to assess the accuracy of the measurement result, the concept of expanded uncertainty is introduced, which is expressed using the coefficient of coverage and standard deviation depending on the method of its assessment: A is by analyzing statistical series of observations and B is by a method different from analyzing statistical series of observations.

Currently, in the navy the characteristics of measurement errors ( systematic and random) are still used to describe the accuracy of the measurement result. A common disadvantage of this approach is that systematic and random errors are not related to each other through the laws of distribution of random variables.While estimating the systematic and random components of the errors measured on a vessel of parameters, in general, both estimates are used separately – type A and type B, which is fairly incorrect. The article shows that a random variable cannot be characterized unambiguously – by expectation or standard deviation. It is characterized by a confidence interval for a given probability.

Also in the navy there is a situation where the requirements for the accuracy of instruments for measuring parameters in the ship’s ergatic function are in no way connected with the requirements for the accuracy of solving practical problems based on the results of these measurements.

In the article, the sensitivity of the ship’s ergatic function is expressed through the expanded uncertainty of measurements. A technique has been developed for assessing the accuracy of parameter measurements, which takes into account the combined effect of systematic and random measurement errors, as well as the level of confidence in them. Using the obtained expressions, one can solve various problems of estimating the accuracy of measurements of various parameters on a ship, as well as determining the requirements for the accuracy of their measurements. Also, if  data on the divisions of the scales of measuring instruments are available, it is possible to determine their acceptability for solving specific practical problems on the ship.

Key words: sensibility, ship’s ergative function, expanded uncertainty, measurements, entropy, systematic and random errors, level of confidence, coverage factor.

References
  1. ISO/IEC Guide 98-03:2008. Uncertainty of Measurement – Part 3: Guide to the Expression of Uncertainty of Measurement (GUM:1997). – International Standards Organisation. – Geneve, 2008. – 100 p.
  2. Бобыр В.А. Судовые эргатические функции: монография / Бобыр В.А. – К.: Кафедра, 2014. – 362 с.
  3. Вентцель Е.С. Теория вероятностей / Вентцель Е.С. – М.: Наука – Главная редакция физико-математической литературы, 1969. – 564 с.
  4. Борисов Ю.И. Метрология, стандартизация и сертификация: учебник / Борисов Ю.И., Сигов А.С., Нефедов В.И. и др. – М.: ФОРУМ, 2009. – 336 с.
  5. Сулаберидзе В.Ш. Проблема погрешности и неопределенности измерения / Сулаберидзе В.Ш. – http//ninsu.ru/article/arts/article_3.pdf.
  6. Бобыр В.А. Повышение точности измерений навигационных параметров. Судовождение: сб. научн. трудов / ОНМА, Вып. 20. – Одесса: ИздатИнформ, 2011. – С.16-22.
  7. Кондрашихин В.Т. Теория ошибок и ее применение к задачам судовождения / Кондрашихин В.Т. – М.: Изд-во «Транспорт», 1969. – 256 с.
  8. Пилипенко Н.В. Диалектика необходимости и случайности / Пилипенко Н.В. – М.: Мысль, 1981. – 263 с.
  9. Бобыр В.А., Райнов А.О. Чувствительность судовой эргатической функции определение места. Судовождение: сб. научн. трудов / НУ ОМА, Вып. 27. – Одесса: «ИздатИнформ», 2017. – С. 15-25.
  10. Руководство по навигационному оборудованию. МАМС. – Международная ассоциация морских средств навигационного оборудования и маячных служб (МАМС). – Сен-Жермен: 2006. – 190 с.
A. K. Sandler, O. V. Drozd Shipboard weighing system of containers

DOI: 10.31653/2306-5761.27.2018.176-182 | PDF

Abstract

According to IMO studies, numerous crash cases with container vessels were caused precisely by the fact that the weight of the containers was incorrectly indicated. As a result, cargo, containers and vessels were damaged. Statistics show that there are numerous cases when cargo containers arrive from the ship to the sea. To find ways to improve the situation with heavy control operations at container terminals, the structures of the most common types of vagometric devices were analyzed.

Under the prevailing conditions, it was expedient to develop a new circuit design solution of a gauge device. It was assumed that a constructive implementation based on fiber-optic and electromechanical elements should provide a measuring device:

  • the possibility of taking into account when weighing the actual center of gravity of the container with the load;
  • absence of additional information channels and reloading operations during weighing;
  • lack of dependence on climatological factors;
  • high sensitivity and precision preservation, as well as simplicity and reliability of circuit design solutions of known types.

For solving the problem, a scheme of a weight-control device is proposed. The proposed system for weighing containers is characterized in that the base is movable and driven along the guide along the height of the container row by a linear electric motor, the weight of the container is transmitted to the sensitive element by means of a beam with a reverse spring and an eccentric pressing on a stem which interacts with the sensitive an element of aluminum ox nitride, connected to fiber optic fibers, a weight gauge spring and a terminal switch that controls a linear electric motor.

The application of the proposed system of weighing containers, in addition, will increase the safety and efficiency of technological weight control processes in general.

 

Keywords: system, cargo, container.

References
  1. Подобед В.А., Подобед Р.В., Папуша А.Н., Вульфович Б.А. Транспортировка крупногабаритных особо тяжелых грузов морем // Вестник МГТУ. – 2014. – Том 17. – № 1. – С. 87 – 91.
  2. Коробейников А. Ф. Исследование гидростатических направляющих // Вестник Хакасского технического института – филиала КГТУ. – Абакан, 2006. – № 22. – С. 42 – 47.
  3. Гаркунов Д.Н. Триботехника (конструирование, изготовление и эксплуатация машин). – М.: ГРНТИ, 2002. – 426 с.
  4. Бушуев В.В. Гидростатическая смазка в станках. – М.: Машиностроение, 1989. – 176 с.
  5. Нiwin. Линейные направляющие. http://www.linear.com.ua/catalog/hiwin-linear-motion.pdf.
  6. Фещенко В.Н. Справочник конструктора. Книга 2. Проектирование машин и их деталей. – М.: Инфра-Инженерия, 2016. – 400 с.
  7. А.с. 982867 СССР, М.Кл3 B 23 Q 1/02. Гидростатические направляющие металлорежущего станка/С.Н. Аграновский, Г.В. Гаврилова, Б.С. Шейнин; заявитель и патентообладатель: Особое конструкторское бюро станкостроения. – № 3297247/25-08; заявл. 05.06.81; опубл. 23.12.82. Бюл. № 47. – 2 с.
  8. Заявка на Деклараційний патент України на корисну модель № u201700572 від 20.01.2017.
A. K. Sandler, O. V. Drozd Hydrostatic system for operations with heavy cargo

DOI: 10.31653/2306-5761.27.2018.189-195 | PDF

Abstract

Special role in the transportation of heavy cargo is played by hydrostatic rigging systems designed for horizontal cargo operations on ships. This is due to a number of advantages of rigging cargo guides over traditional ones – they are low cost, easy to operate and easy to mount systems for loads of different weights.

At the same time, the use of existing hydrostatic rigging systems revealed their incomplete compliance with modern tasks for the safe operation of cargo operations. In order to find ways to improve the operational characteristics of freight rails, the schematic solutions of their lubrication systems are analyzed.

In the prevailing conditions, it was expedient to develop a new circuit design solution for lubrication of guides. It was supposed that constructive implementation should ensure:

– the possibility of using high-viscosity lubricants with the necessary and sufficient flow of these materials;

– minimized influence of climatic factors on cargo operations;

– independence from power supply;

– high level of liquid friction in the whole range of speeds and loads when moving a load;

– simplicity and reliability of circuit design solutions of known types.

For the solution of the problem, a diagram of the lubrication system of the guides is proposed.

The proposed circuit design differs in that the system involves the capacity for the lubrication cartridge, a power secondary cylinder, whose piston rod, under the influence of pressure, creating six primary cylinders having an actuator from the device for converting the translational motion into the rotary and toothed rails, compresses lubricant cartridge and provides lubricant in the lubrication pockets.

The use of the offered device will allow to carry out an adequate and economical mode of lubrication while moving along the guides of heavy duty loads.

Keywords: guide, load, lubricant.

References
  1. Жуков Е.И. Технология морских перевозок / Е.И. Жуков, М. Н. Письменный – М.: Транспорт, 1991. – 335 с.
  2. Снопков В. И. Технология перевозки грузов морем: Учебник для вузов. 3-е изд., перераб. и доп. – СПб.: АНО НПО «Мир и Семья», 2001. – 560 с.
  3. Международный кодекс морской перевозки навалочных грузов (МКМПНГ). http://docs.cntd.ru/document/499028824.
  4. Николаева Л.Л. Морские перевозки / Николаева Л.Л., Цымбал Н.Н. – Одесса: Феникс, 2005. – 425 с.
  5. Пат. 2410281 Российская Федерация, МПК B63B25/24. Устройство для предотвращения смещения грузов в трюме судна / П.И. Бухарицин, Л. Г. Беззубиков; заявители и патентообладатели: Бухарицин П. И., Беззубиков Л. Г.– опубл. 27.01.2011. – Бюл. №3. – 3 с.
  6. Пат. 2007325 Российская Федерация, МПК B63B25/24. Устройство для предотвращения смещения пакетированных и сыпучих грузов в трюме судна / О.А. Мороцкий; заявитель и патентообладатель: МороцкийО. А. – № 4921280/11; заявл. 21.03.1991; опубл. 15.02.1994. – 3 с.
  7. Фещенко В.Н. Справочник конструктора. Книга 1. Машины и механизмы: учеб.- практ. пос./ В.Н. Фещенко. – М.: Инфра-Инженерия, 2016. – 400 с.
  8. Корнилов Э.В. Палубные механизмы и судовые устройства морских судов / Корнилов Э.В., Бойко П.В., Корнилов В.Э. – М.: Инфра – Инженерия, 2009. – 420 с.
A. K. Sandler, Y. M. Tsupko Device for prevention of shear cargo in hold

DOI: 10.31653/2306-5761.27.2018.189-195 | PDF

Abstract

When transporting bulk cargo by sea vessels, the latter are prone to significant and prolonged thrust and vibration, saturation of moisture from the air and temperature influences. As a result, the bulk cargo changes its rheological characteristics (the angle of internal friction and the initial resistance to the shift), and for materials with a moisture content of more than 4% at negative temperatures, the probability of freezing is high.  In the case of dynamic influences and shaking in the mass of the cargo, periodic deformation waves will necessarily be formed, which will result in the migration of the liquid in the intergranular space and to some quasistationary state, which is determined by the periodic field of mass forces. This suggests that, in arbitrary places of the hold, where the “focus” waves from dynamic actions, in the consolidated material can form zones with cracks in which there will be a sparged cargo in the form of a suspension. These processes inevitably lead to an avalanche-shaped shift of cargo.

In the static mode (the load is loaded to the level of the corresponding layer of the device). When working on a winch on a “straight-forward” chain, due to its contact with the star-shaped drums, the chain moves in the direction of “nose-feed” and moves perforated panels rigidly fixed to it. Perforation of panels is carried out to reduce the overall weight of the device. Panels are taken out of a folded state and come into contact with the load. After full deployment of panels, they form a geodesic network of cells over the surface of the cargo, which counteract the shift of cargo.In the first dynamic mode (loading of bulk cargo), when the cone of a bulk cargo, the height of which is 15% higher than the height of the location of the corresponding layer of the device, the latter is put into effect. Interaction on the forward and reverse movement of the device allows you to perform an even distribution of cargo in the area of the cargo hold. This operation is carried out until the full distribution of the cargo at the appropriate level. After that, the device enters the static mode. On two other levels there are identical operations.In the second dynamic mode (unloading of bulk cargo), the winch operates in the direction of the “feed-nose” as soon as the surface is cleared over the panels.Due to the fact that the levels at which the layers of the device are located much lower than the hold of the hold, there is no particular effect on the stability of the vessel and metacentric height.The proposed circuit design differs in that the device is located along the sides horizontally in three tiers at the height of the hold, the drive of the perforated panels is carried out using a closed circuit, all the components of the panels are connected on the hinges, and for the movement of the panels used guides and shoes, fastened on the chain.The technical effect is achieved due to the fact that the combination of mechanical elements provides:– more complete blocking of landslide processes in bulk cargo due to overlap of three layers of perforated panels – geodetic network;– improvement of trouble-free operation and motor power due to abrasion and mechanical wear of the chain drive;– improvement of the device;– simplification of the design of the drive and its unification on the element base with drives closing the hold covers;– reducing the cost of the device.The use of the proposed device will allow the maintenance of loose cargo in the specifications and enhance the safety of the transportation of such goods by sea.

Keywords: system, cargo, guide.

References
  1. Жуков Е.И. Технология морских перевозок / Е.И. Жуков, М. Н. Письменный – М.: Транспорт, 1991. – 335 с.
  2. Снопков В. И. Технология перевозки грузов морем: Учебник для вузов. 3-е изд., перераб. и доп. – СПб.: АНО НПО «Мир и Семья», 2001. – 560 с.
  3. Международный кодекс морской перевозки навалочных грузов (МКМПНГ). http://docs.cntd.ru/document/499028824.
  4. Николаева Л.Л. Морские перевозки / Николаева Л.Л., Цымбал Н.Н. – Одесса: Феникс, 2005. – 425 с.
  5. Пат. 2410281 Российская Федерация, МПК B63B25/24. Устройство для предотвращения смещения грузов в трюме судна / П.И. Бухарицин, Л. Г. Беззубиков; заявители и патентообладатели: Бухарицин П. И., Беззубиков Л. Г.– опубл. 27.01.2011. – Бюл. №3. – 3 с.
  6. Пат. 2007325 Российская Федерация, МПК B63B25/24. Устройство для предотвращения смещения пакетированных и сыпучих грузов в трюме судна / О.А. Мороцкий; заявитель и патентообладатель: МороцкийО. А. – № 4921280/11; заявл. 21.03.1991; опубл. 15.02.1994. – 3 с.
  7. Фещенко В.Н. Справочник конструктора. Книга 1. Машины и механизмы: учеб.- практ. пос./ В.Н. Фещенко. – М.: Инфра-Инженерия, 2016. – 400 с.
  8. Корнилов Э.В. Палубные механизмы и судовые устройства морских судов / Корнилов Э.В., Бойко П.В., Корнилов В.Э. – М.: Инфра – Инженерия, 2009. – 420 с.
V. V. Severin comparison of models of probability estimation of navigaiting/piloting the ship by the congested route

DOI: 10.31653/2306-5761.27.2018.196-201 | PDF

Abstract

Showed results of imitation design of estimation of authenticity of wiring of ship by the compressed route with the help of two different models, thus one of them uses the closeness of distributing of vector’s error of ship, and other is based on the closeness of error of her lateral declination. It is carried out comparison of the got values of probabilities and confirmed legitimacy of the use of estimation of authenticity of wiring of ship on the compressed route by simpler model with the use of closeness of error of she lateral declination.

For the first method of estimation of authenticity of the accident-free sailing of ship on the chosen route the mathematical model of closeness of distributing of vector’s error of ship and description of region of the safe sailing is used, wiring of ship is formalized thus, as stochastic process of Markov. Second method of estimation of authenticity of the accident-free sailing of ship by the compressed route it is formalized with the help of model to the closeness of error of his lateral deviation from the programmatic trajectory of motion and with the use of description of region of the safe sailing and programmatic trajectory of motion of ship, which is characterized by the conciseness of region and change of trajectory.

For each of models the imitation program was developed, with the help of which for the same compressed route of sailing, which includes the scopes of region of the safe sailing and programmatic trajectory of motion of ship, the calculation of authenticity of the safe wiring of ship was conducted by the compressed route with the help of both models, and the got results were compared. In work estimation of authenticity of the safe wiring of ship was conducted by the compressed route for five routes with different descriptions of conciseness of safe region and change of programmatic trajectory, and also exactness of wiring of ship. In quality an example in work resulted the detailed analysis of two routes.

As a result of comparison of the probabilities safe wiring of ship by the compressed route for five routes, got on both models appear that a middle relative difference between estimations of the probabilities safe wiring of ship on both models makes 0,3 %, that confirms legitimacy of estimation of authenticity of the safe wiring of ship by the compressed route by a model with the use to the closeness of error of she lateral declination.

Keywords: navigation accident rate, closeness of distributing, estimation of probability of the safe wiring, imitation design. 

References
  1. Кондрашихин В.Т. Определение места судна / В.Т. Кондрашихин – М.: Транспорт, 1989. – 230с.
  2. Груздев Н.М. Оценка точности морского судовождения / Н.М. Груздев- М.: Транспорт, 1989. – 192 с.
  3. Мельник Е.Ф. Обоснование выбора критерия навигационной безопасности судовождения/ Е.Ф. Мельник // Судовождение. – 2002. – № 5. – С. 65-73.
  4. Ворохобин И.И. Эквивалентность оценки вероятности безаварийного плавания судна в стесненном районе / И.И. Ворохобин., В.В. Северин, Ю.В. Казак // Судовождение: Сб. научн. трудов. / ОНМА, Вып. 25. – Одесса: «ИздатИнформ», 2015 – С. 47-55.
  5. Чапчай Е.П. Количественная оценка навигационной безопасности поворота судна в стесненных условиях плавания/ Е.П. Чапчай // Судовождение. – 2005. – № 10. – С. 148 – 152.
  6. Ворохобин И.И. Процедура оценки вероятности безаварийного плавания судна в стесненных водах/ И.И Ворохобин., В.В Северин. // Проблеми техніки: Науково-виробничий журнал. – 2014. – № 4 . – С. 119 – 126.
  7. Ворохобин И.И. Количественная оценка безопасности судовождения / И.И. Ворохобин, В.В. Северин, Ю.В. Казак // Автоматизация судовых технических средств: науч. -техн. сб. – 2015. – Вып. 21. Одесса: ОНМА. – С. 34-39.
V. E. Sikirin Impact of law of ship’s traffic control of ship’s course on accuracy of navigation

DOI: 10.31653/2306-5761.27.2018.202-209 | PDF

Abstract

Differential equalization of the guided motion of ship is resulted on the angle of prowling. Depending on different types of management of ship equalization of change of angle of his prowling is got. It is shown that the lateral taking of ship depends on descriptions of moments of indignation, and also from frequency of own vibrations of ship after the angle of prowling and his coefficient of fading. Analytical expressions of maximal value of the lateral tearing down of ship are got at proportionally-differential and proportsyonal – integral – differential algorithm of management of ship.

In work differential equalization of motion of ship is resulted on the angle of prowling which is determined by the moment of inertia of ship and added the masses of water in relation to vertical to the landmark, by the hydrodynamic moment of resistance, moment from a helm and revolting moment.

The got differential equalization is heterogeneous linear with permanent coefficients, the common decision of which consists of decision of the proper homogeneous equalization and partial decision which is determined by right part of differential equalization.

Own attenuation vibrations of ship on the angle of prowling are the decision of the proper homogeneous equalization, the period of which depends from a moment inertia of ship in relation to vertical to the landmark, and also from a hydrodynamic coefficient and coefficient of feather of helm of ship.

The partial decision characterizes taking which is the sum of two constituents: taking of ship under action of permanent constituent of revolting moment and the forced oscillation of ship on the angle of prowling which arises up through the harmonic constituent of revolting moment. For indemnification of permanent displacement from the asymmetrical prowling an additional signal what proportional to the integral is entered in the law of management, and also a signal dependency upon angular speed of prowling is used. He diminishes amplitude of prowling of ship in relation to the programmatic course of ship.

In completion of the article dependence of exactness of realization by the ship of programmatic trajectory is considered on the law of traffic control of ship on a course. It is shown that most exactness of maintenance of ship on the set trajectory is provided PID the law of management, so as warns appearance of permanent displacement and provides the minimum value of amplitude of prowling of the forced vibrations.

Keywords: safety of navigation, exactness of realization of program trajectory, law of management of motion of ship.

References
  1. К. Benedict. Simulation Augmented Manoeuvring Design and Monitoring – a New Method for Advanced Ship Handling/ K. Benedict, M. Kirchhoff, M. Gluch, S. Fischer, M. Schaub, M. Baldauf, S. Klaes// TransNav, International magazine on marine navigation and safety of marine transport, Vol. 8, № 1, page 131-141, 2014.
  2. J. Shi. Identification of Ship Maneuvering Model Using Extended Kalman Filters/ C.J. Shi, D. Zhao, J. Peng, C. Shen// TransNav, International magazine on marine navigation and safety of marine transport, Vol. 3, № 1, page 105-110, 2009.
  3. Ljacki. Intelligent Prediction of Ship Maneuvering / M. Ljacki // International magazine on marine navigation and safety of marine transport, Vol. 10, № 3, page 511-516, 2016.
  4. Пискунов Н. С. Дифференциальное и интегральное исчисление / Пискунов Н. С. – М.: Наука, 1985. – 560 с.
V. Sokolenko, S.E. Maltsev, A.S. Maltsev The navigation device for converting the coordinates of the satellite antenna of the vessel to the center of gravity

DOI: 10.31653/2306-5761.27.2018.210-221 | PDF

Abstract

Purpose: The implementation of naval operations for maneuvering vessels in constrained conditions is accompanied by external disturbances. In order to maintain the high operational characteristics of the control system in such difficult conditions is necessary to approach, the introduction of navigation support with decision-making devices. Unlike the applied overview-comparative method of traffic control, the use of navigation devices requires the automation of information processing processes and the adoption of decisions on the management of the vessel coming from their results. The creation of such systems requires further study of the maneuvering process and development of modern navigation devices.

Methods: One of the modern approaches to solving the problem is the creation of information support about the parameters of its condition, which are currently absent. Among such parameters is the information about the coordinates of the center of gravity. The method of solving such a problem is the synthesis of algorithms and calculation schemes for determining the coordinates of the center of gravity by the position of the satellite antenna.

Results: An algorithm is developed and a block diagram of the navigation device for calculating the corrections of the antenna coordinates for recalculation to the center of gravity of the vessel. The results of modeling can be used to designate a valid permissible distance of the shortest approach and to create an automated warning device for embankment.

Conclusions: The effectiveness of the proposed approach is confirmed by computational verification in full-scale conditions. The computational experiment performed showed its correctness when compared with the results of the full-scale experiment. The obtained results can be used on sea-going vessels to create navigation devices for information support for maneuvering and for training in maritime educational institutions.

 

Key words: algorithm for calculating corrections; high-precision coordinates of the center of gravity; decision support system; computational experiment; synthesis of the information system.

References
  1. Вагущенко Л.Л. Судовые навигационно-информационные системы/ Л. Л. Вагущенко, А. Л. Вагущенко. – Одесса: НУ «ОМА», 2016. – 238.
  2. Мальцев С.Э. Полюс поворота и его учет при маневрировании морского судна: монография/ С.Э.Мальцев, О.Н. Товстокорый. – Херсон. ХГМА, 2016. – 124 с.
  3. Патент на корисну модель. Мальцев А.С., Ворохобін І.І., Соколенко В.І. Пристрій для попередження посадки судна на мілину. МПК (2011) G 08 G3/00. Рег. номер. U 2010 09828. Пріоритет від 10.03.2011 р.
  4. Генри Г.Хойер. Управление судами при маневрировании. / Генри Г. Хойер. Перевод с английского. – М.: Транспорт, 1992 – 101 с.
  5. Andy Chase. Sailing Vessel Handling and Seamanship-The Moving Pivot Point/ The Northern Mariner/Le Marin du nord, IX, No. 3 (July 1999), рр. 53-59.
  6. Hugues Cauvier. The Pivot Point/ The PILOT №295. October 2008. The official organ of the United Kingdom Maritime Pilot Association.
  7. Патент 91006 UA. МПК (2014.01) G08G 3/00. Пристрій для інформаційного забезпечення маневрування морського судна. /Голіков В.В., Мальцев С.Е. Заявник Одеська національна морська академія. – № u2013 04429; заявлено04.2013; опубліковано 25.06.2014, Бюл. № 12.
  8. Патент 97227 UA. МПК G08G 3/02 (2006.01), В63В 43/02 (2006.01). Пристрій для інформаційного забезпечення процесу управління судном. /Мальцев С.Е., Товстокорий О.М., Бень А. П. Заявник Херсонська державна морська академія. – № u2014 07280; заявлено 27.06.2014; опубліковано 10.03.2015, Бюл. № 5.
  9. Патент 98720 UA. МПК (2015.01) В63В 21/00 Система інформаційного забезпечення швартування танкера VLCC до моно буя. / Деревянко А.А., Мальцев С.Е. Заявник Одеська національна морська академія. – № u2014 10883; заявлено 06.10.2014; опубліковано 12.05.2015, Бюл. № 9.
  10. Патент 100293 UA. МПК G08G 3/00 (2015/01), Спосіб інформаційного забезпечення маневрування морського судна. / Товстокорий О.М., Мальцев С.Е., Бень А. П. Заявник Херсонська державна морська академія. – № u 2014 12711; заявлено 26.11.2014; опубліковано 27.07.2015, Бюл. № 14.
  11. Свідоцтво про реєстрацію авторського права на твір №68552. Комп’ютерна програма «Система високоточного планування шляху переходу морського судна»/ Мальцев А.С., Бень А.П., Терещенкова О.В., Соколенко В.І. Заявник Херсонська державна морська академія. Дата реєстрації 09.11.2016.
V.B. Udolatiy, A.E. Udolatiy Computer modeling of indicators of evaluating the effectiveness of investment projects

DOI: 10.31653/2306-5761.27.2018.222-227 | PDF

Abstract

Great importance is attached to the effective use of financial means in maritime transport. In this article, we will talk about mathematical modeling of optimal management of investment projects. Consider using the Matlab / Simulink software package to optimize financial management projects for shipping companies. The Matlab / Simulink complex is designed for the development and analysis of engineering applications. It can also be used to model and analyze the dynamics of economic and financial forecasts. Simulink is an application to Matlab and is an interactive tool for visual design and analysis of dynamic systems.

             In the article one of the tasks of financial management is considered – computer modeling of indicators of efficiency evaluation of investment projects.

Investment projects are characterized, as a rule, by a long interval of realization. Therefore, there is a problem of bringing cash flows (current or forecasted in the future) to monetary units of a certain period of time. In this case, the discounted value method is used, the essence of which is determined by the procedure for calculating compound interest.

             For a quantitative analysis of the results of investment projects, the net present value method (Net Present Value-NPV) and the Profitability Index (PI) method are widely used based on the discount calculations of income and expenses associated with the project implementation and reduced to a certain point in time (usually to the beginning of the project).

             As an example, consider the algorithm for calculating in the Matlab / Simulink environment the indicator of the investment project of the shipping company associated with the acquisition of a new vessel.

The article shows a model made up of sections of the Simulink library that implements the calculation of the Present Value indicator. The operation of the S_PV model is controlled from the file program (Script M-Files) of the Matlab package.

             This article analyzes the possibility of using the interactive visual design tool Simulink to analyze the dynamics of economic and financial forecasts. The resulted results testify to expediency of application of program complex Matlab / Simulink for optimization of projects of financial management of the shipping companies.

Keywords: investment project, model, software complex Matlab / Simulink.

References
  1. Ануфриев И.Е., Смирнов А.Б., Смирнова Е.Н. МАТЛАБ 7. – СПб.: БХВ-Петербург, 2005. – 1104 с.
  2. Цисарь И.Ф., Нейман В.Г. Компьютерное моделирование экономики. – М.: Диалог-МИФИ, 2002. – 304 с.
  3. Лапкина И.А., Павловская Л.А., Болдырева Т.В., Шутенко Т.И. Проектный анализ. Теоретические основы оценки проектов на морском транспорте. Учебн. Пособие / Под общ. ред. И.А. Лапкиной – Одесса: ОНМУ, 2008.- 315с.
  4. Черных И.В. SIMULINK: среда создания инженерных приложений / Под общ. ред. к. т. н. В.Г. Потемкина. – М.: ДИАЛОГ – МИФИ, 2003.– 496 с.
  5. Удолатий В.Б. Применение среды Scilab для решения задач финансового менеджмента / Матеріали науково-технічної конференції «Енергетика судна: експлуатація та ремонт», 26-28 березня 2014 р. Частина ІІ– Одеса: ОНМА, 2014. – С. 124-126.
P.A. Chapchay, M.S. Alekseychuk Method of choice of manoeuvre of deviation of ship for safe divergence

DOI: 10.31653/2306-5761.27.2018.228-235 | PDF

Abstract

For the situations of rapprochement of ship with a target procedure of estimation of no unconcern of rapprochement is offered with the help of region of impermissible parameters of motion of ship. For a case, when speed of ship more small to speed of target, the method of determination of course of deviation of ship is considered for warning of possible collision. Shown realization of the offered procedure with the help of the computer program.

In the case when speed of ship more small to speed of target, procedure of choice of course of deviation of ship is offered for warning of collision with a target, using group of dangerous relative courses and all possible relative courses taking into account the relation of speeds of ship and target.

So as in this case absent synonymous dependence between relative and veritable courses, the great number of dangerous relative courses of deviation is determined at first, the graphic reflection of which is a region on a plane. If a point with the value of relative course of rapprochement is in a region, the situation of rapprochement is dangerous. In this case for the choice of optimum course of deviation it is needed to choose a relative course which answers the border of region, and then to define the proper veritable course of deviation. There are cases, when the scopes of region do not achieve the value of safe relative course of deviation, in such case it is required to change speed of ship, at which the values of safe relative course of deviation are within the limits of possible region

Offered realization of the developed procedure with the help of the computer program, thus the resulted examples of determination of course of deviation of ship at his rapprochement with a target. The operative and simplicity of estimation of no unconcern of rapprochement and choice of course of deviation of ship for warning of collision with a target with the help of region of impermissible parameters of motion of ship is shown. It is marked that it is expedient to use the offered computer variant of realization of the got procedure in the perspective navigation informative systems.

The examples of forming of region of impermissible parameters of motion of ship are resulted for the inflicted situation and determination with its help of estimation of no unconcern of rapprochement of ship with a target, and also choice of course of deviation of ship for warning of collision with a target to the condition of its unchanging speed.

Keywords: safety of navigation, warning of collision of vessels, region of impermissible parameters, estimation of danger of rapprochement, divergence by the change of course.

References

1. Lisowski J. Game and computational intelligence decision making algorithms for avoiding collision at sea/ Lisowski J. // Proc. of the IEEE Int. Conf. on Technologies for Homeland Security and Safety. – 2005. – Gdańsk. – рр. 71-78.
2. Lisowski J. Game control methods in navigator decision support system/ Lisowski J. // The Archives of Transport. – 2005. – No 3-4, Vol. XVII. – рр. 133-147.
3. Lisowski J. Dynamic games methods in navigator decision support system for safety navigation/ Lisowski J. // Advances in Safety and Reliability. – 2005. – Vol. 2. – London-Singapore, Balkema Publishers. – рр. 1285-1292.
4. Statheros Thomas. Autonomous ship collision avoidance navigation concepts, technologies and techniques / Statheros Thomas, Howells Gareth, McDonald-Maier Klaus. // J. Navig. 2008. 61, № 1, рp. 129-142.
5. Бурмака И.А. Управление судами в ситуации опасного сближения / И.А Бурмака., Э.Н Пятаков., А.Ю. Булгаков – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), – 2016. – 585 с.

Y. Yarmolovich The prospects of revival of river navigation in Ukraine

DOI: 10.31653/2306-5761.27.2018.236-244 | PDF

Abstract

The article investigates main actual problems of Ukrainian river shipping. For the moment the minor part of country cargoes are transporting via inner water ways. There is only 15-20% of rivers potential in use nowadays. At the same time the scope of companies are seeking possibilities to be involved into the river shipping due to less costs involved. Shipped cargoes analysis eliminated the group of most used of them. There are grain, steel and ore. The minor part includes building materials and containerized cargoes. We have evaluated present situation of river infrastructure – ports, terminals, locks, navigation support, fleet, canals. Most of components are in unsatisfactory condition and needs modernization. Ports and terminals are equipped with worn out equipment. Most of locks are old and their capacity is limited and insufficient. Navigation equipment is outdated; some of buoys and lights are lost. Most expensive object of the inner water ways are canals, most complicated procedure is canals maintaining. They weren’t dredged till requested draft. Such dredging to be arranged for 80% of navigable rivers. Resources amount to be involved is huge and could be accumulated under government supervision only. Besides, legal system is rather improper. It proclaims national business priority. “Old” rules give no chance to attract foreign investors and use foreign flag fleet. Custom arrangement is complicated and expensive. Ukrainian government is discussing modern “River Low” a long time but it doesn’t finalized yet. There are several companies responsible for each component of water way usage fees collecting. It is important to concentrate funds and coordinate efforts in the one hand.

Conclusions which are proposed in the article are:

– Ukrainian inner water ways actual condition satisfies present balance between cargo supply and demand

– further progress is difficult without funds and resources concentration likely under government supervision

– the benefits for river shipping expansion to be evaluated in consideration of social and ecological aspects.

Keywords: river transport, inland waterways, river tax, unification of rules.

References
  1. Дойти до Роттердама: Зачем Франция строит канал Seine-North Europe [Электронный ресурс] / Т. Тавлуй // Центр Транспортных Стратегий. – 2008. – Режим доступа: https://cfts.org.ua/articles/doyti_do_rotterdama_zachem_frantsiya_stroit_kanal_seine_north_europe_1403/100341
  2. Что ждет речной транспорт Украины в контексте евроинтеграции? [Электронный ресурс] / С. Кинка // Informer.Оd.Ua/-– Режим доступа: http: //informer.od.ua/news/chto-zhdet-rechnoj-transport-ukrainy-v-kontekste-evrointegratsii/
  3. Внутренние водные пути Украины: пора возрождения [Электронный ресурс] / Н. Верещака / Порты Украины // № 03 (105) 2011. – Режим доступа к журн.: https://ports.com.ua/articles/archive/vnutrennie-vodnye-puti-ukrainy-pora-vozrozhdeniya
  4. Куда ведет «Укрводшлях» — интервью и.о. начальника [Электронный ресурс] / А.Муравский // Порты Украины. – – Режим доступа к журн.: https://ports.com.ua/articles/kuda-vedet-ukrvodput-intervyu-io-nachalnika
  5. О проекте Методики расчета ставок портовых сборов – вариант пятый [Электронный ресурс] / В. Попов / Моряк Украины.// № 3 от 24.01.2018. – Режим доступа к журн.: https://moryakukrainy.livejournal.com/4202222.html
  6. Закон о внутреннем водном транспорте: точки конфликта [Электронный ресурс] / А.Муравский // Порты Украины. – – Режим доступа к журн.: https://ports.com.ua/articles/zakon-o-vnutrennem-vodnom-transporte-tochki-konflikta
  7. Деньги, шлюзы и закон: Как активизировать судоходство по Днепру [Электронный ресурс] / А. Костюченко // Центр Транспортных Стратегий.- 2018. – Режим доступа: https://cfts.org.ua/articles/dengi_shlyuzy_i_zakon_kak_aktivizirovat_sudokhodstvo_po_dnepru_1391
  1. Днепровские шлюзы [Электронный ресурс] / А.Д. Шершнев // Порты Украины. – 2018. – Режим доступа : https://ports.com.ua/spravka
    /infrastruktura/dneprovskie-shlyuzy
  2. С караваном «НИБУЛОНа» — по Днепру через Каховский шлюз [Электронный ресурс] // Информационное агентство Інше.ТВ. –2017. – Режим доступа: https://inshe.tv/video/2017-11-03/279042/
  3. Речной торговый флот Украины за 30 лет сократился на 80% [Электронный ресурс] //Пропозиція – Главный журнал по вопросам агробизнеса. – – Режим доступа: http://propozitsiya.com/richkovyy-torgovelnyy-flot-ukrayiny-za-30-rokiv-skorotyvsya-na-80
  4. Все “за”, один “против”: кому выгоден закон о речных перевозках [Электронный ресурс] / О. Быстрицкая // Центр Транспортных Стратегий.- 2018.- Режим доступа:.- https://cfts.org.ua/articles/vse_za_odin_protiv_komu_
    vygoden_zakon_o_rechnykh_perevozkakh_1172