Issue №31



L. Vagushchenko, A. Vagushchenko, A. Aleksishin Collision avoidance planning with a situational approach to determine the type of actions
DOI: 10.31653/2306-5761.31.2021.08-21 | PDF
It is proposed to form strategies to avoid collision by using combined Z-maneuvers and their particular cases. To be with due regarding to COLREGs, limitations and situational approach were used to identify timely, safe and adequate situations, decisive ships’ passing maneuvers. The type of encounter situation was determined depending on the visibility conditions, the geometry of approaching own ship and hazardous target, and navigation status of these vessels. Acceptable on distance of targets passing combined Z-maneuvers with their particular cases were found by using two composed semi-ellipses domains and circular domains of hazard, the center of which is shifted from the target mass point towards the bow. In the measures allowed by the COLREGs for resolving different types of encounter situations, the three kinds of actions were distinguished according to the degree of their adequacy to the situation: basic, backup, and non-recommended actions.

To comply with the COLREGs, enumerating method was applied to search for optimal strategy to avoid collision and return to the initial course and speed. At each step of the enumeration, it is determined that the current option of the maneuver belongs to one of the selected sets of acceptable variants of the maneuver. Among the current number of variants of this set, according to the selected criterion the best one has been found. Also, at each step of enumeration, the loss of sailing time due to deviation from the route and other characteristics are determined for the current variant of maneuver. After the end of the enumeration, according to the selected criterion the best maneuver variant on the set of required substantial variants is considered optimal for collision avoidance. If this set is empty, the optimal variant for collision avoidance is the best option on the set of lower degree of adequacy to the situation. The criteria and limitations for determining the best option for different sets are not the same. A numerical method for determining the set of the acceptable start of the maneuver for returning to the active route leg after the completion of combined Z-maneuver has been also developed. When solving the problem, the dynamics of the own vessel was taken into account in a simplified manner, and it was assumed that the parameters of the movement of targets would be unchanged. The authenticity of this method has been checked by means of simulation modeling of ships’ passing.

The results of the analysis of the set of acceptable variants of the strategy, obtained during the enumeration, were memorized. Having based on these results it became possible to build the diagram, which facilitates for the operator the choice of actions in the dialogue mode with the system.

Key words: collision avoidance, combined Z-manoeuver, compliance with COLREGs, enumerative method.

  1. Tam C., Bucknall R., Greig A., (2009). Review of collision avoidance and path planning methods for ships in close range encounters. The Journal of Navigation, 62 (3): 455-476.
  2. Huang Y., Chen, L., Chen P.Negenborn R.R.van Gelder, P.H.A.J.M. (2020). Ship collision avoidance methods: State-of-the-art. Safety Science. 121: 451–473.
  3. Fışkın R, Kisi, H, Nasibov (2018). A research on techniques, models and methods proposed for ship collisions avoidance path planning problem / The International Journal of Maritime Engineering. 160(A2): 187-206.
  4. Naeem W,  Henrique S. C.,  Hu L. (2016). A Reactive COLREGs-Compliant Navigation Strategy for Autonomous Maritime Navigation /10th IFAC Conference on Control Applications in Marine Systems: Trondheim, Norway: 207-213.
  5. Hirayama K., Miyake K., Shiota T., Okimoto T. (2019). DSSA+: Distributed Collision Avoidance Algorithm in an Environment where Both Course and Speed Changes are Allowed /TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 13, No. 1: 117-123.
  6. Kufoalor D. K. M., Johansen T. A., Brekke E. F., Hepsø A., Trnka K. (2020). Autonomous maritime collision avoidance: Field verification of autonomous surface vehicle behavior in challenging scenarios /Journal of Field Robotics. 37: 387–403.
  7. Ramos M.A., Utne I.B., Mosleh A. (2019). Collision avoidance on maritime autonomous surface ships: Operators’ tasks and human failure events /Safety Science. 116: 33–44.
  8. Szlapczynski R. & Szlapczynska J. (2017). Review of ship safety domains: Models and applications. Ocean Engineering 145: 277–289.
  9. Xu Q., Wang N. (2014). A Survey on Ship Collision Risk Evaluation. / Promet – Traffic & Transportation, Vol. 26, No. 6: 475-486.
  10. Wielgosz M. (2017). Ship Domain in Open Sea Areas and Restricted Waters: an Analysis of Influence of the Available Maneuvering Area. /TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 11, No. 1: 99-104.
  11. Smolentsev S. V., Isakov D. V. (2019). A simple analytical model of ship movement. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S. O. Makarova 11.1: 7–21.
  12. Salous M., Hahn A., Denker C. (2016). COLREGs-Coverage in Collision Avoidance Approaches: Review and Identification of Solutions /12th International Symposium on Integrated Ship’s Information Systems & Marine Traffic Engineering Conference. Hamburg: 1-10.
  13. Zaccone R., Martelli M., Figari M. (2019). A COLREG-Compliant Ship Collision Avoidance Algorithm. – 18th European Control Conference (ECC). Napoli, Italy: 2530-2535.
  14. Chiang H-N. L.Tapia L.  (2018). A RRT-based COLREGS-Compliant Motion Planner for Surface Vehicle Navigation / IEEE Robotics and Automation Letters. 3(3):2024 – 2031.
  15. Łebkowski A., Śmierzchalski R., Gierusz W., Dziedzicki K. (2008): Intelligent ship control system. Transnav, the international journal on marine navigation and safety of sea transportation, vol. 2, No. 1: 63-68.
  1. Vagushchenko A. A. & Vagushchenko L. L. (2020). Numerical method for selection of maneuvers to avoid collisions with several vessels. Science and Education a New Dimension. Natural and Technical Sciences, VIII (27), Issue 224: 74-80.
S.E. Maltsev Operational control of maneuvering width in compressed waters
DOI: 10.31653/2306-5761.31.2021.22-36 | PDF
The analysis of the historical aspect of the development of the mathematical model for determining the abscissa of the pivot point of rotation is considered in the work. Three stages of model formation are described: according to the location of the transverse force that causes the ship to rotate; on the resulting transverse force of all influences of internal and external forces; on the tangential speed of the limbs of the vessel. The first stage of data generation is unsuitable for use in the maneuvering process due to the need to spend time on entering new data and performing calculations, as a result of which the information is delayed until a decision is made. The second stage requires the introduction of external and internal control forces, the calculation of their transverse component and the calculation of the equivalent of all transverse forces, to determine the abscissa of the pivot point.

The third stage is the most suitable for navigation purposes, because it receives the original data from the existing navigation device, requires minimal calculations, so it can be performed quickly, in the process of maneuvering and in time to execute the necessary commands to adjust the movement.

Based on the use of new methods for determining the abscissa of the pivot point developed a block diagram of the system of control and registration of the probable width of the shunting band, taking into account the characteristics of stability, speed of the vessel and angular velocity at constant speed and when turning.

Developed methods and techniques of using a given algorithm for planning and operation of the ship control system, including curved segments of the path, can significantly increase the safety of navigation. The use of information about the pivot point and planning the width of the maneuvering shift, allows you to detect the beginning of the curvilinear motion and adjust the controls to move along the planned trajectory.

The results can be used on ships in automatic mooring planning, as part of a pilot’s individual information device and in the development of a simulator for training navigators to perform navigation in compressed waters. The proposed device can be used in the training of captains, pilots and senior courses of maritime educational institutions of Ukraine.

Keywords: boundary yaw on a constant course, maneuvering shift, curvilinear motion, pivot point, characteristic linear size, probable width of maneuvering shift, operative control, admissible width of navigable water area.

  1. Снопков В.И. Управление судном. /В.И. Снопков// – Санкт-Петербург: АНО НПО «Профессионал», 2004. -536 с.
  2. Голиков В.В. Алгоритм определения положения полюса поворота морского судна/В.В. Голиков, С.Э. Мальцев. Научный журнал. -Херсон.: ХГМА, 2013. №1(8). С. 21 – 27.
  3. Мальцев С.Е. Алгоритм определения положения полюса поворота при маневрировании. «Судноплавство: перевезення, технічні засоби, безпека»: Матеріали науково-методичної конференції – (Одеса, 14-15 листопада 2012 року.). – Одеса: ОНМА. ВидавІнформ, 2013. – С.106 – 110.
  4. Мальцев С.Э. Устройство оценки полюса поворота по тангенциальным скоростям конечностей/ С.Э. Мальцев., В.В. Голиков. «Морські перевезення та інформаційні технології в судноплавстві»: Матеріали науково-методичної конференції – (Одеса, 18-19 листопада 2014 року.). – Одеса: ОНМА. ВидавІнформ, 2014. – С.172 – 176.
  5. Товстокорый О.Н. Определение положения полюса поворота с помощью доплеровского лага//О.Н. Товстокорый, С.Э. Мальцев/Судовождение: Сб.научн. трудов//НУ «ОМА». Вып.26. Одесса: ИздатИнформ. 2016. – С.183 – 190.
  6. Мальцев С.Э. Полюс поворота и его учет при маневрировании морского судна: монография/ С. Э. Мальцев, О. Н. Товстокорый. //–Херсон: ХГМА, 2016. -124 с.
  7. Мальцев С.Е. Когнитивная система оценки положения полюса поворота судна с помощью эффективных алгоритмов. / С.Е. Мальцев //Eastern-European Journal of Enterprise Technologies. Natural and Technical Sciences. – 2018. V1 (19), issue –P.37 – 42.
  8. Мальцев С.Е. Удосконалення інформаційного забезпечення процесу маневрування параметрами стану судна. // «Транспортні технології (морський та річковий флот): інфраструктура, судноплавство, перевезення, автоматизація», науково – технічна конференція, 14-15 листопада 2019 р. –Одеса: НУ «ОМА» 2019. – С. 129 – 131.
  9. Патент 91006 UA. МПК(2014.01) G08G 3/00. Пристрій для інформаційного забезпечення маневрування морського судна. /Голіков В.В., Мальцев С.Е. Заявник Одеська національна морська академія. – № u2013 04429; заявлено 25.04.2013; опубліковано 25.06.2014, Бюл. № 12.
  10. Патент 97227 UA. МПК G08G 3/02 (2006.01), В63В 43/02 (2006.01). Пристрій для інформаційного забезпечення процесу управління судном. /Мальцев С.Е., Товстокорий О.М., Бень А. П. Заявник Херсонська державна морська академія. – № u2014 07280; заявлено 27.06.2014; опубліковано 10.03.2015, Бюл. № 5.
O. Melnyk, O. Kravchenko, S. Borovyk The method of determining the optimal scheme of project cargo delivery
DOI: 10.31653/2306-5761.31.2021.37-43 | PDF
The search for optimal solutions that enable efficient development of the required transportation volumes at the lowest possible cost is currently one of the main challenges for the growth of the maritime transport sector. The process of project cargo transportation using the maritime transport is associated with the complexity of mass and geometric characteristics of these loads, which requires the development of new methods of their adaptation to the technical capabilities of the seagoing ships. Every case of project cargo transportation require thorough voyage planning with regard to loading, stowage and securing of oversized and heavy units. That is certainly lead to combination of solutions that require an individual approach, application of special techniques and skills for the development of delivery schemes and organization of transportation of this type of cargo and, of course, the adoption of measures to ensure the safety of the transportation process. Ensuring the proper level of functioning of transport systems, solving economic problems by expanding the volume of exports and transport services is always a topical issue. Due to the growing demand for project cargo transportation using sea freight, which is objectively the best option for international transportation in terms of economic component of the cost-effectiveness of its use and its role in international trade. The shipping of project cargo on a long distances using maritime transport is in high demand among the customers of high-tech equipment and machinery, which further increases the share in the statistics of general cargo transportation in whole. Issues of cargo safety among those that pay heightened attention, determines the guarantee of preserving the shipment, on-time delivery, as well as the absence of loss or damage to cargo.

Keywords: project cargoes, transportation, optimal delivery scheme.

  1. Pravdyn N., Vzaimodeystvye raznih vidov transporta, [Interaction of types of transport] / N. Pravdyn, V. Negriy, V. – Moscow: Transport, 1989. – 208 p.
  2. Miloslavskaya S., (2001). Multimodalniye i intermodalnie perevozki. [Multimodal and intermodal transporation]. S.V. Miloslavskaya, К.I. Pluzhnikov // Uchebnoe posobyie. – Moscow. RosKonsult, 2001, 368 p.
  3. Zemlyanskiy P., (2004). Suschnost i klassifikatsiya smeshannih perevozok. [Substance and classification of multimodal transportation]. Transpotnoe pravo – 3.
  4. Peel D. A hidden Markov model approach for determining vessel activity from vessel monitoring system data / D. Peel, N. Good. // Canadian Journal of Fisheries and Aquatic Sciences. – 2011. (68). 1252–1264.
  5. Melnyk О. (2020). Modelling of changes in ship’s operational condition during transportation of oversized and heavy cargo / S. Onyshchenko, О. Melnyk // Technology audit and production reserves.– 6/2(56). – pp. 66-70.
  6. Melnyk O. (2020) Effectiveness assessment of non-specialized vessel acquisition and operation project, considering their suitability for oversized cargo transportation / M. Malaksiano, O. Melnyk // Transactions on Maritime Science. – 2020. – №1(9). 23-34.
  7. Rusanova S., Onyshсhenko S. (2020). Development of Transport and Technological Process Options’ Concept for Goods Delivery with Participation of Maritime Transport. Technology audit and production reserves, 1 (2 (51)), 24–29. doi:
  8. Onyshchenko S., Shibaev O. and Melnyk O. (2021). Assessment of Potential Negative Impact of the System of Factors on the Ship’s Operational Condition During Transportation of Oversized and Heavy Cargoes, Transactions on Maritime Science. Split, Croatia, 10(1). doi: 10.7225/toms.v10.n01.009.
  9. Shramenko N., (2017). Methodological aspect of substantiating the feasibility of intermodal technology for delivery of goods in the international traffic. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 145-150.
  10. Naumov V., (2020). Substantiating the Logistics Chain Structure While Servicing the Flow of Requests for Road Transport Deliveries. Sustainability 12, no. 4: 1635.
  11. Menukhova Т., (2017). Vremennie kriteryi dlya vybora shemi dostavki gruza. [Time criteria for selecting a shipping scheme]. TDR, (2), 150-152.
  12. Semenov S., (2017). Vybor ratsionalnoy shemi dostavki gruzov v mezhdynarodnom soobschenii. [Selection of a rational scheme of cargo delivery in international shipping] / S. Semenov, S. Kravchenko, О. Shepit’ko, А. Vololazskiy // Visnik of the Volodymyr Dahl East Ukrainian National University (3) 190-194.
  13. Blecker T. (2008). Management in logistics networks and nodes / T. Blecker, W. Kersten, C. Gertz. – Berlin: Erich Schmidt Verlag, (Concepts, technology and applications). p. 181 – 431.
  14. Orkun G. (2017). Featured, Project and Specialized Cargo, Supply Chain Planning [e-source] / Gunen Orkun // MTS Logistics. – 2017. – Available at:
  15. Мelnyk О. (2020) Vessel selection prospects and suitability assessment for oversized cargo transportation. / М. Malaksiano, О. Melnyk // Scientific notes of Taurida National V.I. Vernadsky 31(70)2-1. 135-140.
S.A. Mikhailov, I.M. Vikulin, N.S. Mikhailov Electronic gas-analyzers for unmanned ships
DOI: 10.31653/2306-5761.31.2021.44-52 | PDF
Principles of action of electronic analyzers of gas environment, the sensors of that are realized on the basis of the field transistors with a structure «metal-dielectric-semiconductor», optronic gas sensors and magnetic electronic sensors, are described. Charts over of measuring, construction of sensors are brought and basic application domains are indicated. Experimental descriptions over of pre-production models of electronic analyzers of gas environment and flow diagrams of measuring devices are brought.

A task of creation fully of electronic automatic measuring devices for control of composition of gas environment is especially actual for autonomous unmanned ships without a crew. The feature of realization of such task is that output signals of measuring devices must be all-electric, electronic, consonant with the systems of transmission of these coastal control centers.

Known devices, measuring of composition of gas environment, executed on the basis of the semiconductor thin-films inflicted on ceramic basis, have a high energy consumption and limited tenure of employment from the necessity of their heating to the temperatures 200 – 500 °C.

Perspective are the measuring systems on the basis of the field transistors executed on a structure «metal-dielectric-semiconductor». Such devices can be used for control of maintenance of hydrogen. Application of bridge chart of measuring on four such transistors allowed to promote a sensitiveness in 10-15 times.

The optronic measuring systems differ in an enhanceable fast-acting and stability of testimonies due to absence of contact of gas atoms with the electric chains of sensor. A chart is offered for control of maintenance of ammonia in the gas environment of ship.

Magnetic electronic sensors gas analyzer on the basis of twocollectors magnetic transistor can be applied for measuring of concentration of oxygen in a gas environment on a ship. He allows to control maintenance of gas and measure his concentration on electrophysics descriptions of gas. In particular, measuring take place by control of size of relative permeance of gas mixture.

Quite obviously, that the electronic analyzers of gas environment for the different types of gases will become the obligatory attribute of future autonomous unmanned ships without a crew. They will be able not only to replace classic gas analyzers but also will allow, in real-time, operatively to inform the operators of coastal control centers about a current situation for the acceptance of necessary decisions on providing of safety of navigation.

Keywords: automatic ships, electronics data transmit, gas-analyzer, safety of navigation, navigation, unmanned ships.

  1. ВикулинИ.М. Электронный компас для автономных судов без экипажа. / И.М. Викулин, Н.С. Михайлов, С.А. Михайлов // Судноводіння: Зб. наук. праць. / НУ «ОМА», Вип. 30. с. 43-51. – Одеса: «ВидавІнформ», 2020. DOI:
  2. Burmeister H. C. Autonomous unmanned merchant vessel and its contribution towards the e-Navigation implementation: The MUNIN perspective/ H. C. Burmeister, W. Bruhn, О. J. Rоdseth, T. Porathe // International Journal of e-Navigation and Maritime Economy. — 2014. — Vol. 1. — pp. 1–13. DOI: 10.1016/j. enavi.
  3. Jokioinen E. Remote and Autonomous Ships — The next steps / E. Jokioinen, J. Poikonen, M. Hyvönen, Kolu, [etc.]. — London: AAWA Position Paper, Rolls-Royce, 2016. — 88 р.
  4. Vikulin M. Combined semiconductor injection magnetic field sensors for wireless information networks. / I.M. Vikulin, L.F.Vikulina, V.E.Gorbachev, N.S.Mikhailov // Radioelectronics and Communication Systems, 2020, Vol. 63, № 7, pp. 368-375. – Allerton Press. – N.-Y. – 2020.
  5. Park B., Nah J., Choi J., Yoon I. Robust Wireless Sensor and Actuator Networks for Networked Control Systems,” Sensors (Basel), Vol. 19, No. 7:1535, p. 1–28, 2019. DOI: 10.3390/s19071535.
  6. Chen Z., Deng F., Fu Z., Wu “Design of an Ultra-low Power Wireless Temperature Sensor Based on Backscattering Mechanism,” Sensing and Imaging An International Journal, Vol. 19, No. 1, pp. 19–24, 2018. DOI: 10.1007/s11220-018-0207-x.
  7. Luong S.; Lu C.C.; Yang J.W.; Jeng J.T. “A novel CMOS transducer for giant magnetoresistance sensors” Review of Scientific Instruments, Vol. 88, No. 2:025004, 2017 DOI: 10.1063/1.4976025.
  8. Luong S., Tuan N.A., Tue N.A. “Exchange Biased Spin Valve-Based Gating Flux Sensor,” Measurement, Vol. 115, p. 173–177, 2018. DOI: 10.1016/j.measurement.2017.10.038.
  9. LiR., Mi W.B., Bai H.L. “The contribution of distinct response characteristics of Fe atoms to switching of magnetic anisotropy in Fe4N/MgO heterostructures,” Applied Physics Letters, Vol. 113, No. 13:132401, 2018. DOI: 10.1063/1.5048317.
  10. Jibiki, Goto M., Tsujikawa M. et al. “Interface resonance in Fe/Pt/MgO multilayer structure with large voltage controlled magnetic anisotropy change,” Applied Physics Letters, Vol. 114, No. 8:082405, 2019. DOI: 10.1063/1.5082254.
  11. Bichurin M.I., Petrov V.M., Petrov R.V., Tatarenko A.S. “Magnetoelectric Magnetometers,” in: Grosz A., Haji-Sheikh M., Mukhopadhyay S. (eds) High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation, Vol 19. Cham: Springer, pp 127–166. DOI:
  12. Ding, Huang L., Luo G. et al. “A resonant microcantilever sensor for in-plane multi-axis magnetic field measurements,” Journal of Micromechanics and Microengineering, Vol. 29, No. 6:065010, 2019. DOI: 10.1088/1361-6439/ab18ed.
  13. Ichkitidze, Selishchev S., Telyshev D. “Combined Magnetic Field Sensor with Nanostructured Elements,” Journal of Physics Conference Series, Vol. 1182:012015, p. 1–9, 2019. DOI: 10.1088/1742-6596/1182/1/012015.
  14. Luong S., Tuan N. A.; Tue N. A. et al. “Application of the flux bending effect in an active flux-guide for low-noise planar vector tmr magnetic sensors,” Vietnam Journal of Science and Technology, Vol. 56, No. 6, p. 714–722, 2018. DOI: 10.15625/2525-2518/56/6/12652.
  15. Zhang, Hao Q., Xiao G. “Low-Frequency Noise of Magnetic Sensors Based on the Anomalous Hall Effect in Fe-Pt Alloys,” Sensors, Vol. 19, No. 16:3537, p. 1–6, 2019. DOI: 10.3390/s19163537.
  16. Singh, Luo Z., Lu Z., et al. “Thermal stability of NDR-assisted anomalous Hall effect based magnetic device,” Journal of Applied Physics, Vol. 125, No. 20:203901, 2019. DOI:10.1063/1.5088916.
  17. LuongS., Tuan N.A., Hoang Q.K. “Resolution Enhancement in Measuring Low-frequency Magnetic Field of Tunnel Magnetoresistance Sensors with AC-Bias Polarity Technique,” Measurement, Vol. 127, p. 512–517, 2018. DOI: 10.1016/j.measurement.2018.06.027.
V. Pernykoza, O. Pipchenko, O. Burchak, U. Kazak Simulation of incidents during seafarers training: mitigating GPS fault
DOI: 10.31653/2306-5761.31.2021.53-59 | PDF
The safety of marine navigation in coastal areas and narrow waters, which account for 80% of total navigational accidents, remains a pressing concern. These circumstances indicate the need to improve traditional and automated methods of passage planning and control of navigation and traffic management processes, based on the assessment of the actual navigation accuracy and navigation safety parameters. According to current industry recommendations, the main parameters of safe navigation are safety depth, safety contour, permissible cross-track limit, and accuracy of position fixing.

The analysis of accidents in recent years has shown certain overreliance on ECDIS. IMO has adopted the Guidance for Good Practice for the use of ECDIS, which emphasizes the importance of the operator’s ability to act in the event of failure, display data interpretation and identification of possible errors. The trend of ECDIS related groundings necessitates a more detailed analysis of the accidents causes, as well as further development of passage planning methods adopted for paperless navigation.

Statistics, based on grounding incident investigations, is not always sufficient for retrieving objective information and designing comprehensive solutions for improving the ECDIS training process for deck officers and development of methods aimed at reducing the grounding incident rate and improving the effectiveness of navigation. The research studies statistics on deck officers` errors made during training on bridge simulators equipped with ECDIS. The study shows that in event of the EPFS (Electronic Position Fixing System) failure the likelihood of grounding increases dramatically for all deck officers, irrespective of rank and experience, despite having fully functional radar and ECDIS in dead reckoning mode.

Key words: GPS, ECDIS, safety of navigation, ship grounding, navigational incident.

  1. Admiralty Guide to the Practical Use of ENCs (NP231), 3rd Edition, 2019
  2. Becker-Heins, Voyage Planning with ECDIS. Practical Guide for Navigators. Geomares Publishing, 2017.
  3. Burenkov, O. Pipchenko, “Monitoring and identification of errors during training on ECDIS simulators”, Slovak international scientific journal: Vol. 1, №43, 2020, pp. 46 – 50
  4. ECDIS Procedures Guide 2018 Edition, Witherby Publishing Group Ltd, 2018.
  5. EMSA Annual Overview of Marine Casualties and Incidents 2019. URL: Accessed 20 May 2020
  6. Idris Turna, Orkun Burak Öztürk, “A causative analysis on ECDIS-related grounding accidents”, Ships and Offshore Structures, 2019, DOI: 10.1080/17445302.2019.1682919
  7. IMO resolution A. 893 (21) Guidelines for Voyage Planning, 1999.
  8. IMO resolution MSC 232 (82) Adoption of the Revised Performance Standards for Electronic Chart Display and Information Systems, 2006.
  9. IMO MSC circ. 1503 ECDIS – Guidance for Good Practice, 2017.
  10. INTERTANKO, Guide to Safe Navigation (Including ECDIS), 2017.
  11. D. Nielsen, “How a ship´s bridge knows its position – ECDIS assisted accidents from a contemporary human factors perspective”, MSc Thesis, Lund University, Sweden, 2016.
  12. Swift, T. J. Bailey, Bridge Team Management, 2nd ed. Nautical Institute, London, UK, 2004.
  13. Zvonimir Lusic, Mario Bakota, Zoran Mikelic “Human errors in ECDIS related accidents”, Proceedings of the 7th International Maritime Science Conference, Solin, Croatia, 2017.
  14. О. М. Буренков, О. Д. Піпченко, А. В. Алексішин, “Практичні особливості розрахунку параметрів безпечної глибини при використанні ЕКНІС”, Судноводіння: Зб. наук. трудів НУ ОМА, вип. 30, Одесса, ІздатІнформ, 2020, DOI: 10.31653/2306-5761.30.2020.16-26.
  15. Л. Л. Вагущенко, А. Л. Вагущенко, Поддержка решений по расхождению с судами. Одесса: Феникс, 2010.
  16. О. Д. Піпченко, В.В. Пернікоза, Ю.В. Казак, А.І. Бурчак, “Моделювання інцидентів при підготовці судноводіїв: зіткнення буксира і балкера”, Судноводіння: Зб. наук. трудів НУ ОМА, вип. 29, Одесса: ІздатІнформ, 2019. DOI: 10.31653/2306-5761.29.219.164-172.
  17. О. Д. Піпченко, “Моніторинг та ідентифікація помилок під час навчання на навігаційних симуляторах”, Суднобудування №2 2020, НУК, 2019, DOI, 3 – 11.
K.O. Siniuta Iterative method of vessel stabilization on course and route
DOI: 10.31653/2306-5761.31.2021.60-68 | PDF
Calculating the vessel’s path is one of the most important conditions in ensuring the safety of navigation. The calculation of the vessel’s path is a plan (program) of its movement to calculate the current coordinates. There are two ways to calculate the ship’s path: graphical and analytical. Graphical calculus is the maintenance of a sequential pad from a known starting point of a swimming vector. It is performed in the form of graphical constructions on nautical charts using only a meter, ruler and protractor. In turn, analytical calculus allows by mathematical calculation of the elements of the ship’s motion and the coordinates of the starting point to calculate the coordinates at a given time. The traditional scheme of calculation assumes the account of a drift and a current. The account of constant and tidal currents does not cause, as a rule, big difficulties. Traditionally, the angle and magnitude of the drift vector by the inverse method are taken into account, it does not provide for the accounting of vessel wear at the initial section of the route. The position of the vessel must be monitored continuously while the vessel is sailing. Observation is performed for this purpose. The frequency of observation is characterized by the allowable time of sailing on the account, which is the longest period of time at which the continuously increasing error of the vessel’s position does not exceed the set value.

It is indicated that the relevance of the work lies in the study of road losses when the vessel moves along the coordinate points of the corresponding line of the given course.

An algorithm is proposed for taking into account the flow vectors and wind-wave disturbances at the initial point of the ship’s path, assuming the module of the ship’s relative speed to be constant.  The paper presents a model for determining the elements of a ship’s motion in the form of an algorithm representing a sequence of assignment operators, and operators of input, printing and output, which make up a block diagram of its software implementation.

The article also provides an algorithm for calculating the modules and internal angles of a vector triangle formed as a result of observation. The last step was considered the return to the line of the ship’s track for the next period of time equal to one hour.  In this case, the module of the ship’s speed, the module and the direction of the vector of the total disturbance are preserved, and the ground speed of the ship is variable.

Keywords: ship, vector, speed, speed triangle, disturbance.

  1. Голіков В.В. Координатний метод визначення коефіцієнту ефективності рискання судна/ В.В. Голіков, К.О. Сінюта / Матеріали науково-технічної конференції «Транспортні технології (морський та річковий флот): інфраструктура, судноплавство, перевезення, автоматизація» 12.11.2020-13.11.2020 – Одеса: НУ «ОМА». – 2020. – С.63.
  2. Голиков В.В.Расчетная схема определения эффективности движения судна по заданной траектории при ветроволновых нагрузках / В.В. Голиков, А.А. Светлаков // Судовождение: сб.научн. тр. – 2010. – Вып.19. – Одесса: ОН- МА. – С.55 – 59.
  3. Сінюта К.О. Координатний метод визначення шляхової швидкості судна по векторам та переміщенням відносної та переносної швидкостей [текст] / К.О. Сінюта // Судноводіння: Зб. наук. праць / НУ «ОМА» – Вип. 30. – Одеса: «ВидавІнформ», 2020. – С.117-124.
  4. Кондратенко Ю.П. Алгометрическое обеспечение интеллектуальных систем для принятия решений в морской практике [текст] / Ю.П. Кондратенко, Г.В. Кондратенко, Д.А. Романов, И.В. Явишева // Судовождение: сб.научн. тр. – 2007. – Вып.13. – Одесса: ОН- МА. – С.107 – 116.
  5. Мальцев А.С. Инверсный метод планирования траектории движения объектов управления [текст] / А.С. Мальцев // Судовождение: сб.научн. тр. – 2007. – Вып.13. – Одесса: ОН- МА. – С.124 – 131.
  6. Орлов Е.О. Использование автоматической идентификационной системы для оценки погрешности измерения пеленгов судовыми РЛС [текст] / Е.О. Орлов // Судовождение: сб. научн. тр. – 2007. – Вып.13. – Одесса: ОН- МА. – С.131 – 138.
  7. Кривий О.Ф. Нові математичні моделі поздовжніх гідродинамічних сил на корпусі судна [текст] / О.Ф. Кривий, Міюсов М.В. // Судноводіння: Зб. наук. праць / НУ «ОМА» – Вип. 30. – Одеса: «ВидавІнформ», 2020. – С.88-99.
  8. Голиков В.А. Научные основы управления микроклиматом судна. – Одесса: ОГМА, 1990. – 321 с.
  9. Vlachos D.S. Optimal ship routing based on wind and wave forecast // Application Numerical Analysis in Computational Mathematics. 2004. 1, N 2. 547–551.
  10. Удосконалення методів вибору економічно вигідних і безпечних морських шляхів [Текст]: автореф. дис… канд. техн. наук: 05.22.16 / Голіков Володимир Володимирович; Одеська національна морська академія. – О., 2007. – 22 с.
V. G. Torskiy, V. P. Topalov, V. V. Torskiy Ergonomic safety aspects in the operation of ships
DOI: 10.31653/2306-5761.31.2021.69-79 | PDF
At present time, the main direction for improving the means and methods of navigation should be considered the transition from automation of process devices and operations to complex automation of the bridge – creation of integrated systems for navigation, control and ship management(INS), which are designed to reduce the workload on the watch officer, provide him with the necessary data to perform timely and effective actions in changing sailing conditions. At the same time, the functions of the person carrying the watch on the bridge are change, he becomes an operator and interacts not with objects of control and management, but with their information models on the basis of which he is forming a situational awareness. If previously the officer of the watch himself performed measurements and calculations necessary for safe navigation, and could to a certain extent judge in the reliability of the results, now he is forced to completely trust the means of automation, often without being able to check their readings in an alternative way. At the same time, in navigation systems may occur malfunctions about which the officer of the watch will find out after a while.

It is obvious that the equipment of ships with the latest expensive navigational technology, should give an appropriate return in the form of increasing the safety of navigation. However, as evidenced by the practice, improving navigation aids and equipment of the bridge by itself did not lead to a decrease in the number of accidents at sea in recent years, there has even been a tendency for their increase. Investigation of a number of accidents and the elaborations of reputable maritime specialists convince that the cause of the incidents with the ships are increasingly becoming various violations of the interaction the elements of the complex – “Watch officer- INS”

It can be considered that in connection with the high degree of automation of the navigating bridge, a new factor negatively affecting the safety of the ship has arisen, which should be studied and taking into account by the manufacturers and users of the navigation technology.

Some aspects of this problem and measures to reduce the likelihood of failure and deviations in the functioning of the named complex, as well as other possible directions contributing to the reduction the negative influence of the ergonomic factor on the safety operation of ships are considered in this article.

Keywords: ergonomic, system, errors, safety, information.

  1. Guidelines for the investigation of Human factors in marine casualties and incidents (Res. IMOA. 884(20),23.11.1999).
  2. Пипченко А. Д. Анализ аварийности мирового флота 2005-2015 // Судовождение: Сб. научн. трудов ОНМА, Вып. 27. – Одесса: ИздатИнформ, – С. 159-168.).
  3. Crowch. Navigation the Human Element. MLB Publishing, Kent UK, 2013- 233 p.
  4. Lutzhow. The Technologies Create when it Works. Maritime Technology and Human Integration on the ships Bridge. «Seaways» NI, June 2005.
  5. Merkens H. Improving The Life at Sea. «Seaways», June 2003.
  6. Ahvenjarvi. Poor Monitoring of the Navigation and steering Equipment Increases the Reaction Time in Fault Situation, 7-th Annual Assembly and Conference, Oct. 2006. The International Association of Maritime Universities.
  7. Вагущенко Л. Л. Интегрированные системы ходового мостика. Одесса: Латстар, 2003 -170 с.
  8. Guidance notes on the Application of Ergonomics to Marine Systems. Aug.,2013, ABS,-107 p.
  9. Guidance notes on Ergonomic design of Navigation bridges. Oct. 2003, ABS,-103 p.
  10. IMO MSC-MEPC.2/Circ.12/Rev.2 Revised Guidelines for Formal Safety Assessment (FSA) for Use in IMO Rule-Making Process, 2018.
  11. EMSA Annual Overview of Marine Casualties and Incidents 2019. Accessed 20 Dec 2020
I. A. Burmaka, I.I. Vorokhobin D.B. Fedorov Account dynamics of ships at the automatic choice of manoeuvre of divergence by deviation of one ship and by the passive braking of the other
DOI: 10.31653/2306-5761.31.2021.80-88 | PDF
How is specified in the publication, one of the most actual problems of accident-free of navigation is providing of safe divergence of ships at sailing in the compressed waters. On this reason the compressed districts of sailing with intensive motion of ships have the stations of traffic control of ships for the control of process of navigation, which must dispose by modern facilities of warning of collision of ships for providing of their safe divergence. Thus such facilities are to reduce negative influence of human factor of operator on estimation of situation of rapprochement and choice of maneuver of divergence by the use of methods of automatic determination of strategy of divergence of ships at their external management. This determines actuality of development of method of automatic determination of parameters of strategy of divergence of ships by the change of their courses.

The analysis of the last achievements and publications is resulted in work, in which the decision of the considered problem and selection of unsolved is begun before parts. It is shown that for the decision of problem of warning of collisions of ships the method of divergence by a change on a line parallel of way of ship and method of flexible strategies of divergence of ships, which allows to form optimum strategy of divergence of ship with a few dangerous targets taking into account substantial factors, is developed. Strategy of urgent divergence is considered at surplus rapprochement of ships.

In the publication the algorithm of automatic determination of optimum maneuver of divergence by deviation of one ship and by the и passive braking of other is described taking into account the dynamics of ships. Thus for the first ship the model of turning with permanent angular speed is used, by which is determined increase of coordinates of ship in times of a turn. The dynamics of the second ship is taken into account by his inertia-brake descriptions.

The choice of course of deviation of the first ship and speed of the passive braking of the second ship settle accounts so that their divergence on distance of the shortest rapprochement is provided – possible distance of rapprochement.

In quality the criterion of optimum work of increase of course of the first ship is chosen on the increase of speed of the second ship, which for the optimum maneuver of divergence is to be minimum.

Analytical expressions which determine the model of turning of the first ship with permanent angular speed and dependence of time of process and the distance passed for this time in the case of the use of the passive braking by the second ship are resulted in work.

In the publication in quality an example the resulted situation of dangerous rapprochement of two ships, for which the computer imitation program expected the optimum parameters of maneuver of divergence by deviation of the first ship and passive braking of the second ship. The computer program conducted the imitation design of process of divergence of ships with the got parameters of divergence which confirmed correctness of the offered method of automatic determination of optimum maneuver.

Keywords: safety of navigation, warning of collision of vessels, external process of divergence control, automatic determination of parameters of strategy of divergence.

  1. Цымбал Н.Н. Гибкие стратегии расхождения судов / Н.Н. Цымбал, И.А. Бурмака, Е.Е. Тюпиков. – Одесса: КП ОГТ, 2007. – 424 с.
  2. Пятаков Э.Н. Взаимодействие судов при расхождении для предупреждения столкновения / Пятаков Э.Н., Бужбецкий Р.Ю., Бурмака И.А., Булгаков А.Ю. – Херсон: Гринь Д.С., 2015. – 312 с.
  3. Бурмака И.А. Управление судами в ситуации опасного сближения / И.А. Бурмака., Э.Н. Пятаков., А.Ю. Булгаков – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), – 2016. – 585 с.
  4. Бурмака И.А. Экстренная стратегия расхождения при чрезмерном сближении судов / Бурмака И.А., Бурмака А. И., Бужбецкий Р.Ю. – LAP LAMBERT Academic Publishing, 2014. – 202 с.
  5. Пятаков Э.Н. Способ расхождения судна с двумя опасными целями последовательными уклонениями/Пятаков Э.Н., Пятаков В.Э., Петриченко О.А. // Austria – science, Issue: 16, 2018.- С. 44-49.
  6. Вагущенко Л.Л. Расхождение с судами смещением на параллельную линию пути / Л.Л. Вагущенко. – Одесса: Фенікс, 2013. – 180 с.
  7. Kao Sheng-Long. A fuzzy logic method for collision avoidance in vessel traffic service / Kao Sheng-Long, Lee Kuo-Tien, Chang Ki-Yin, Ко Min-Der// Navig. 2007. 60, № 1, p. 17-31.
  8. Lisowski J. Game and computational intelligence decision making algorithms for avoiding collision at sea/ Lisowski J. // of the IEEE Int. Conf. on Technologies for Homeland Security and Safety. – 2005. – Gdańsk. – Р. 71 – 78.
  9. Statheros Thomas. Autonomous ship collision avoidance navigation concepts, technologies and techniques / Statheros Thomas, Howells Gareth, McDonald-Maier Klaus. // J. Navig. 61, № 1, p. 129-142.
O. Shyshkin, O. Pashenko New requirements for radio communication equipment using digital selective calling
DOI: 10.31653/2306-5761.31.2021.89-98 | PDF
This paper is devoted to the analysis of the updated requirements for maritime shipborn VHF and MF/HF equipment using digital selective calling (DSC) and to investigation of their implementation peculiarities in the GMDSS simulator Sailor TGS 6000. These requirements refer, first of all, improvements the human-machine interface (HMI) for handling radio communication equipment with DSC strictly according to operational procedures of Recommendation ITU-R M.541 and Radio Regulation which is intended DSC as a mandatory GMDSS procedure prior to the subsequent communications of all priorities providing by means special equipment.

DSC is one of the key subsystems of the GMDSS. However, from the beginning of the GMDSS implementation in 1999, practical problems of correct application DSC procedures were brought out. Due to the complexity of the hardware control and the variety of control panels for the equipment of different manufacturers, navigators often neglect the mandatory DSC procedures for establishing subsequent radio communication by radiotelephony or telex. In order particularly to overcome this problem, the International Telecommunication Union (ITU) has developed general requirements for HMI, which are implemented in the European DSC Equipment Standard of 2020 year. It is pointed ‘particularly’ because in this standard was considered the ways for improving DSC communication interface by dealt only with the DSC controllers themselves and had restricted possibilities for their improvements. The new approach had been worked out in National University “Odesa Maritime Academy” on the base of integration DSC communication equipment and navigation equipment which gives the real possibility for significant improvements operational properties DSC with realizing standard user interface. But this approach doesn’t yet represent in ITU standard. Right now working out such kind of standard is underway (preparing numbers of International Electronic Commission (IEC) standards). That is why in this article only existing technical standard (Recommendation ITU-R M.541) and corresponding EU standard are considered. Especially it’s concern of appearing the new possibilities in cancelling false distress alerts.

The features of radio communication DSC procedures were examined using Sailor TGS 6000 simulator (VHF DSC 6222 and MF/HF DSC 6301 transceivers). Particular attention is paid to the implementation of procedures for transmitting and receiving distress calls, as well as canceling false distress alerts when subsequent types of communication is telephony or telex.

The procedure of a multi-frequency distress alert in the MF/HF band has been analyzed under interaction with coast and ship stations that received the distress call. Attention is given to the automatic prompts and warnings for aimed to choosing correct actions and precaution improper intentions of the operator. The correct actions of the operator for cancelling false distress alerts when assigning the next type of radio communication (telephony and telex) are analyzed in detail. The examples demonstrate the advantages of the new HMI in terms of presentation the entire amount of information and templates for transmitting voice (text) cancellation messages. The importance of practical mastering of radio communication procedures with a new interface for performing correct actions in emergency situations is emphasized.

The addressed in the article issues are aimed, among other things, at helping cadets in theoretical and simulator GMDSS training, taking into account the new requirements for DSC equipment.

Keywords: GMDSS, VHF, MF/HF, interface, distress, false alert.

  1. Model course 1.25 – General operators certificate for the global maritime distress and safety system. Course + Compendium. IMO. London, 2015.
  2. Міжнародна Конвенція з охорони людського життя на морі 1974 року (МК СОЛАС-74). (Консолідований текст, змінений Протоколом 1988 року до ней, з поправками), – СПб.: АО “ЦНИИМФ”, 2021 г. – 1184 с.
  3. Review and Modernization of the Global Maritime Distress and Safety System (GMDSS). Sub-Committee on Navigation, Communications and Search and Rescue, NCSR 1/Inf. 14, 25 April 2014.
  4. IMO NCSR 6/11/1. First draft revision of resolution A.806(19). Submitted by Germany, 16 October 2018.
  5. Recommendation ITU-R M.541 – Operational procedures for the use of digital selective-calling equipment in the maritime mobile service.
  6. Recommendation ITU-R M.493-15 – Digital selective calling system for use in the maritime mobile service.
  7. ETSI EN 300 338-2: Technical characteristics and methods of measurement for equipment for generation, transmission and reception of Digital Selective Calling (DSC) in the maritime MF, MF/HF and/or VHF mobile service; Part 2: Class A DSC, 2020.
  8. Кошевий В.М., Купровський В.І., Шишкін О.В. Глобальний морський зв’язок для пошуку та рятування (GMDSS)підручник для студентів вищих навчальних закладів. – Одеса: Екологія, 2011. – 248 с.
  9. Tetley, D. Calcutt. Understanding GMDSS The Global Maritime Distress and Safety System. Great Britain, 1994.
  10. Пашенко О. Л. Радіостанція Sailor VHF DSC 6222. Експлуатаційні процедури радіозв’язку: навчальний посібник / О.Л. Пашенко, В.І. Купровський, О.В. Шишкін. – Одеса: НУ «ОМА», 2021. – 51 с.
K.V. Shumilova Implementation of the strategy of cybersecurity in safety management systems of the ship
DOI: 10.31653/2306-5761.31.2021.99-107 | PDF
Cyber security is becoming a top priority for world shipping. The paper investigates the latest cyber security reports, proving that navigation systems, port infrastructure, drilling rigs and on-board automated machinery can become extremely vulnerable to targeted cyber attacks. The analysis of today’s marine information systems vulnerabilities brings into focus that ship crews with no knowledge on how to recognize and deal with cyber attacks are the “weakest link” in the cyber chain. Given the lack of proper procedure for responding to a cyber threat or cyber incident, the paper discusses the need to develop a cyber security strategy for the training of shore and ship personnel. The examination of the latest known information on security vulnerabilities demonstrates the possibility of conducting risk identification for each ship information system with the determination of the security level and through the rating scale of 0.0 to 10.0.

The paper determines the processes of cyber resilience analysis for developing a response plan on any vessel. Considering that professionals have no opportunity to reach the ship for urgent maintenance or modernization of essential systems and software, the paper suggests basic cyber security management procedures that enable to understand whether a device regularly connected to the “Crew” local network or the ship’s network is detected, monitor the use of removable devices violating the safety rules, detect suspicious remote access to the ship’s network or operational technologies network, and detect unusual communication connections between the “endpoints” of ship systems.

The conclusions define the need to develop a cyber defence strategy, which takes into account the ship’s system vulnerabilities and is based on the comprehensive risk identification, cyber resilience analysis and development of a response plan, which will significantly reduce the risk of cyber attacks.

Keywords: safety of shipping, shipping risks, cyber-safety, cyber attacks, safety management system, information systems, information safety.

  1. Maritime cyber-attacks up by 900% in three years. Available at: (viewed on 2021-02-05)
  2. The Guidelines on Cyber Security Onboard Ships, version 3.0, BIMCO, CLIA, ICS, INTERCARGO, INTERMANAGER, INTERTANKO, OCIMF, WSC and IUMI, 2018
  3. IMO / Maritime cyber risk. Available at: (viewed on 2020-12-31)
  4. Shumilova K., Onishchenko O. ACTION PLANNING IN COMPREHENSIVE SHIPPING RISK IDENTIFICATION. The scientific heritage | International independent scientific journal. No 49 (2020). Р.1. – P. 40-46. ISSN 9215 – 0365.
  5. NATIONAL VULNERABILITY DATABASE / Information Technology Laboratory / NIST, 2021. Available at: (viewed on 2021-01-03)
  6. Acronis опубликовала доклад о киберготовности, 2020. Режим доступу: (переглянуто 2021-02-05)
  7. Schroedinger’s Pet(ya). 2017. Available at: (viewed on 2020-11-20)
  8. В большинстве компаний мира не верят в возможность успешного противостояния хакерам, 2020. Режим доступу: (переглянуто 2021-01-15)
  9. 10 самых впечатляющих кибератак в истории, 2020. Режим доступу: (переглянуто 2020-12-19)
  10. Уязвимости. Positive Technologies, 2021 [Електронний ресурс]. – Режим доступу: Positive+Technologies/ (переглянуто 2021-01-25)
  11. Вильский Г.Б. Информационная безопасность судовождения: монография / Г. Б. Вильский. – Миколаїв: Видавництво ФОП Швець В. Д., 2014. – 336 с.
Burmaka I.O., Vorokhobin I.I., Yanchetskyy O.V. Determination of a group of dangerously approaching vessels
DOI: 10.31653/2306-5761.31.2021.108-113 | PDF
As stated in the article, ensuring the safety of navigation is one of the most important problems of accident-free navigation. Confined waters are characterized by navigational obstructions and heavy traffic, which create preconditions for emergencies.

One of the features of navigation in confined waters is the occurrence of situations of dangerous convergence of several targets, which requires the development of methods to ensure safe separation of ships in such situations. Therefore, the development of methods for controlling ships in situations of dangerous convergence, to which this article is devoted, is an urgent and promising scientific direction.

The article provides an analysis of the latest achievements and publications, in which the solution of this problem has been started and previously unresolved parts of the general problem are highlighted. It is shown that to prevent collisions, a method of flexible divergence strategies has been developed, which, with locally independent control of the divergence process, allows choosing the optimal divergence strategy for a ship with several dangerous targets, taking into account significant factors. The formalization of the COLREG-72 is also proposed and the interaction of ships in a situation of dangerous approach in the event of a collision threat is considered. Prevention of collision of ships by the method of displacement to a parallel track line is considered and a method of divergence of a ship with two dangerous targets by successive evasions from each of them is proposed.

The article shows the feasibility of developing an analytical system that uses the principle of external control of the discrepancy process and does not require the use of a VTS. Such a system can be implemented on the basis of ARPA and is located on each of the vessels, and from ARPA and AIS receive information about the surrounding vessels and the parameters of their movement. It is shown that the proposed analytical system should solve two sequential tasks. The first task is to form a group of dangerously approaching vessels in areas of intensive navigation, and the second is to automatically select a joint strategy for the divergence of a group of vessels by changing the movement parameters by methods of external control of the divergence process. The article discusses in detail the first task – the formation of a group of interacting ships in the event of a dangerous approach situation.

Three conditions are formulated that make it possible to include a vessel in a group of interacting vessels from the initial group, which are as follows: the vessels must approach each other, the situation of their convergence is dangerous, and the relative position of the vessels allows the use of a divergence maneuver by changing the course. Analytical expressions are obtained for each of the conditions and the procedure for the exchange of information for the formation of a group is given.

Keywords: safety of navigation, warning of collision of vessels, external process of divergence control, group of vessels.

  1. Цымбал Н.Н. Гибкие стратегии расхождения судов / Н.Н.Цымбал, И.А.Бурмака, Е.Е. Тюпиков. – Одесса: КП ОГТ, 2007. – 424 с.
  2. Пятаков Э.Н. Взаимодействие судов при расхождении для предупреждения столкновения / Э.Н. Пятаков, Р.Ю. Бужбецкий, И.А. Бурмака, А.Ю. Булгаков – Херсон: Гринь Д.С., 2015. – 312 с.
  3. Пятаков Э.Н. Оценка эффективности парных стратегий расходящихся судов / Э.Н. Пятаков., С.И. Заичко // Судовождение: Сб. научн. трудов. / ОНМА, – Вып.15. – Одесса: «ИздатИнформ», 2008. – С. 166 – 171.
  4. Вагущенко Л.Л. Расхождение с судами смещением на параллельную линию пути / Л.Л. Вагущенко. – Одесса: Фенікс, 2013. – 180 с.
  5. Пятаков Э.Н. Способ расхождения судна с двумя опасными целями последовательными уклонениями/Пятаков Э.Н., Пятаков В.Э., Петриченко О.А. // Austria – science, Issue: 16, 2018. – С. 44-49.
  6. Бурмака И.А. Экстренная стратегия расхождения при чрезмерном сближении судов / Бурмака И.А., Бурмака А. И., Бужбецкий Р.Ю. – LAP LAMBERT Academic Publishing, 2014. – 202 с.
  7. Statheros Thomas. Autonomous ship collision avoidance navigation concepts, technologies and techniques / Statheros Thomas, Howells Gareth, McDonald-Maier Klaus. // J. Navig. 61, № 1, p. 129-142.
  8. Lisowski J. The dynamic game models of safe navigation/ Lisowski J. // Advances in Marine Navigation and Safety of Sea Transportation. – 2007. – Р. 23 – 30.
  9. Lisowski J. Intelligent safe ship control methods in collision avoidance/ Lisowski J. // of European Control Conference. – 2007. – Р. 1-6.
  10. Imazu H. Evaluation Method of Collision Risk by Using True Motion / Imazu H.// TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. 2017, Vol. 11, No. 1, p. 65-70.
  11. Бурмака И.А. Управление судами в ситуации опасного сближения / И.А Бурмака., Э.Н Пятаков., А.Ю. Булгаков – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), – 2016. – 585 с.
A. Serdyuchenko Ship’s accelerations due to vibration under sleming conditions on irregular wave
DOI: 10.31653/2306-5761.31.2021.114-129 | PDF
Analysis of the problem and practical approach in the calculations of the high frequency accelerations due to ship slamming in irregular sea waves are considered. Slamming has a negative effect on ship’s operating modes and transporting cargo under stormy conditions and this is one of the reasons why navigators are forced to reduce speed or change ship’s heading angle when wave height increasing. Ship’s hull shaking and its vibration due to slamming is a reason of undesirable inertial effects on the instrument, system, hull structural components and cargo being transported. In addition, the elastic hull oscillations, superimposed on the ship motion cycles, will reduce ship’s service life and fatigue strength.

The problem is formulated within the model of a heavy ideal and incompressible fluid. Total hydrodynamic pressure acting on the hull is determined by the well-known Cauchy-Lagrange integral when ship’s bow immersing under oncoming wave. This approach includes calculation techniques for the estimation of the impact loads on ship bow due to slamming and calculation of ship-hull-guider vibration response under the action of these loads. Corresponding techniques are elaborated for the estimation of high frequency component of accelerations and inertial loads, acting on the ship structures during the operations in irregular waves on short-term time intervals. It is focused on level of vibrating accelerations hull structures component estimation under irregular wave quasi-stationary intervals.

It is demonstrated that bottom slamming loads are more intense and shorter-term than subsequent side slamming one. However, the latter are usually more energy-intensive and therefore can cause more intense vertical elastic hull oscillations after impact. At the same time there are the first four beam forms of oscillations but, the first one is the most energy-intensive. It is proved that the principal coordinates method is quite suitable for slamming problem solution and corresponding practical estimation calculations.

Keywords: sea-going ships, irregular waves, slamming.

  1. Ушкалов В.Ф., Сердюченко А.Н., Шерстюк А.К. Ускорения, возникающие при морской транспортировке ракет-носителей в условиях волнения и качки // Техническая механика. – 2006. – Вып. 2. – С. 20-31.
  2. Ушкалов В.Ф., Сердюченко А.Н. Характеристика ветро-волновых режимов на маршруте транспортировки ракет-носителей из порта Украины к Экватору // Техническая механика. – 2007. – Вып. 1. – С. 20-36.
  3. Knuuttila E., Matusiak J., Rantanen A. Wave-Induced Slamming Loads and Ship Response – Calculations and Measurements. // Helsinki, VTT Report. – 1985. – P. 71–121.
  4. Washio Y., Takanabe H., Inone K. Study of Wave Loads by Full Scale Measurements of Large Ligth Alloy High-Speed Craft // Trans. W.- Jap. Soc. Naval Arch. – 1978. – Vol. 58. – P. 69-83.
  5. Takemoto H., Hashizume Y. Full-scale measurement of wave impact loads and hull responses of ship in waves // J. Soc. Naval Arch. Japan. – 1985. – Vol. 158. – P. 256–269.
  6. Lacey P., Edwards R. ARCO Tanker Slamming Study // Marine Technology. – 1993. – Vol. 30, № 3. – P. 135–147.
  7. Ochi M.K., Motter L. E. Prediction of Slamming Characteristics and Hull Responses for Ship Design // SNAME. – 1973. – № 4. – 23 p.
  8. Belik O., Price W.G. Comparison of slamming theories in the time simulation of ship responses in irregular waves // Int. Shipb. Progress. – 1982. – Vol. 3, № 4. – P. 173–187.
  9. Yamamoto Y., Fujino M., Ohtsubo H., Fukasawa T. Disastrous Damage of a Bulk Carrier due to Slamming // J. Soc. Naval Arch. Japan.- 1983.- V. 154.- P. 516-524.
  10. Yamamoto Y., Iida K., Fukasawa T., Murakami T. Structural damage analysis of a fast ship due to bow flare slamming // Int. Shipb. Progr. – 1985. – Vol. 34, № 369.
  11. Proceedings of the International Ship and Offshore Structures Congress ISSC’03 / Committee II.1, Wave Loads. – USA, 2003. – P. 59–16.
  12. Логвинович Г.В. Гидродинамика течений со свободными границами. – К.: Наукова думка, 1969.– 250 с.
  13. Сагомонян А.Я. Проникание. – М.: Изд-во МГУ, 1974. – 298 c.
  14. Otsubo H., Kohno Y. On the Maximum Pressures in the Water Impact of the Wedge Model // J. Soc. Naval Arch. Japan –1985. – Vol.157. – P. 403–408.
  15. Yamamoto Y., Ohtsubo H., Kohno Y. Water Impact of Wedge Model // J. Soc. Naval Arch. Japan. – 1984. – Vol. 155. – P. 236–245.
  16. Takemoto H. Water Impact Test of a Wedge with Rectangular Plates and its Analysis // J. Soc. Naval Arch. Japan. – 1984. – Vol.156. – P. 306–313.
  17. Takemoto H., Watanabe I., Hashizume Y., Naoi T. On the Full Scale Measurement of Motions and Impact Loads of a High Speed Patrol Boat in Waves // Trans. W.- Jap. Soc. Naval Arch. – 1981. – № 61. – P. 167–179.
  18. Watanabe I. Analytical Expression of the Hydrodynamic Impact Pressure by Matched Asymptotic Expansion Technique // Trans. W.- Jap. Soc. Naval Arch. – 1986. – № 71. – 77–85.
  19. Howison S.D., Ockendon J.R., Wilson S.K. Incompressible water-entry problems at small deadrise angles // J.Fluid Mech. – 1991. – Vol. 222. – P. 215–230.
  20. Korobkin A.A., Pakhnachev V.V. Initial Stage of Water Impact // Ann. Rev. Fluid Mech. – 1988. – Vol. 20. – P. 159–185.
  21. Tanizawa K. Self-Similar Solution of Wedge Entry Problem by B.E.M. // J. Kansai Soc. Naval Arch. Japan. – 1985. – № 196. – 147–154.
  22. Geers T.L. A Boundary-Element Method for Slamming Analysis // J. Ship Research. – 1982. – Vol. 26, № 2.– P. 117–124.
  23. Takagi K., Naito S., Nakamura S. Computation of Nonlinear Hydrodynamic Forces on Two-Dimensional Body by Boundary Element Method // J. Kansai Soc. Naval Arch. Japan. – 1985. – № 197. – 31-38.
  24. Kawakami M., Tanaka K., Michimoto J., Nitta S., Kanazawa M. On the Whipping Vibration due to Slamming of General Cargo Ship // Trans. W.- Jap. Soc. Naval Arch. – 1980. – № 60. – P. 45–
  25. Бойцов Г.В., Кудрин М.А. Методика расчёта гидродинамических давлений от слеминга // Тр. Межд. Конф. памяти акад. Ю. Шиманского.- С.Пб., 1999. – С. 33–
  26. Сердюченко А.Н. Динамика морских волн и судна в шторме с учетом нелинейных эффектов // Гидромеханика: Межвед. сборн. научн. тр. – К., 1998. – Т. 72. – C. 112–134.
  27. Faltinsen O.M. On Seakeeping of Conventional and High-Speed Vessels // J. Ship Research. – 1993. – Vol. 37, № 2. – P. 87–101.
  28. Dynamic Loading for Structural Analysis of Fine Form Container Ship Based on Non-Linear Large Amplitude Motions and Loads Method / Shiu Y-S., Chung J.S., Lin W.M., Zhang S., Engle A. // Trans. SNAME. – 1997. – Vol. 105. – P. 127–154.
  29. Короткин А.И. Присоединенные массы судна: Справочник. – Л.: Судостроение, 1986. – 312 с.
  30. Постнов В.А., Калинин В.С., Ростовцев Д.М. Вибрация корабля. – Л.: Судостроение, 1983. – 247 с.
  31. Бишоп Р., Прайс У. Гидроупругость судов: Пер. с англ.– Л.: Судостроение, 1983. – 420 с.
  32. Soares C.G. Transient response of ship hulls to wave impact // Int. Shipb. Progress. – 1989. – Vol. 36, № 406. – P. 137–156.
Vorokhobin I.I., Burmaka I.O., Fusar I.Yu. Vessel's position accuracy reduction depending on the method of calculation for redundant measurements
DOI: 10.31653/2306-5761.31.2021.130-135 | PDF
The article indicates that in order to control the position of the vessel, measurements of the navigation parameters are made, according to which its coordinates are calculated. In the case of redundant measurements, the coordinates are calculated by the least-squares method, which is effective only when the measurement errors are distributed according to the normal law. As studies of recent decades have shown, navigation measurement errors often do not obey the normal law, while the use of the least-squares method leads to a loss of coordinate accuracy. For this reason, it is necessary to analyze the possibility of calculating the coordinates of the vessel in the presence of redundant measurements by an alternative method using the orthogonal decomposition of the error distribution density.

The paper provides an analysis of the latest achievements and publications, in which the solution of this problem has been started and previously unsolved parts of the general problem are highlighted. It is shown that, as a result of the analysis of statistical data of errors of navigation measurements obtained in field observations, the distribution of errors of navigation measurements differs from the normal law. This is also evidenced by the analysis of statistical materials on the accuracy of determining the position of the vessel using a satellite radio navigation system receiver, which showed that the hypothesis on the distribution of random errors in determining latitude and longitude according to the Gaussian law is not correct.

Evaluation of the efficiency of the observed coordinates of the vessel in the presence of redundant lines of position is made and it is shown that with mixed distribution laws, the efficiency is less than one. The possibility of using mixed laws of two types and the generalized Puisson’s law for describing random errors of navigation measurements is shown.

It is shown that the dependence of the accuracy of the observed coordinates on the method of their calculation is determined by the laws of the assumed and actual distribution of the probabilities of measurement errors, and the accuracy estimate is determined using improper integrals, the expressions for which are given in the work. It is emphasized that if the assumed and actual laws of the distribution of the probabilities of measurement errors are different, then there is a loss of accuracy of the observed coordinates. An expression has been chosen to characterize the loss of precision.

At the expense of the accuracy of the observational coordinates of the vessel, it was considered that the function of the problem was determined by the law of another type. Obtained the equations for the given cases. The formula has been assigned to the accuracy of the accuracy for the normal deceit. Equations were also obtained for assessing the loss of accuracy in the form of the positioning of the observed coordinates using the additional method of orthogonal spreading of the line position. It is necessary to carry out the measurements of the accuracy for both types of data and the accuracy of the vessel coordinates, obtained by the method of victorious orthogonal distribution.

Keywords: navigation safety, methods of calculation of coordinates, loss of exactness, ortogonal decompositions.

  1. Кондрашихин В.Т. Определение места судна / Кондрашихин В.Т. – М.: Транспорт, 1989. – 230с.
  2. Hsu D. A. An analysis of error distribution in navigation / Hsu D. A. // The Journal of Navigation. – Vol. 32.- № 3. – P. 426 – 429.
  3. Monteiro Luis. What is the accuracy of DGPS? / Sardinia Monteiro Luis, Moore Terry, Hill Chris. // J. Navig. 58, № 2, p. 207-225.
  4. Алексейчук Б.М. Идентификация закона распределения погрешностей измерений / Алексейчук Б.М., Пасечнюк С.С. // Судовождение: Сб. научн. трудов. / ОНМА, Вып. 27. – Одесса: «ИздатИнформ», 2016 – С.
  5. Астайкин Д.В. Оценка точности координат судна при избыточных измерениях/ Астайкин Д.В., Сикирин В.Е., Ворохобин И.И., Алексейчук Б.М. – Saarbrucken, Deutschland/Германия: LAP LAMBERT Academic Publishing, 2017. – 274 с.
  6. Мудров В.М. Методы обработки измерений/ Мудров В.М., Кушко В.Л. – М.: Советское радио, 1976. -192 с.
  7. Бурмака И.А. Оценка эффективности обсервованных координат судна при избыточных измерениях / Бурмака И.А., Астайкин Д.В., Алексейчук Б.М. // Вестник Государственного университета морского и речного флота им. адмирала С. О. Макарова. Санкт-Петербург. – 2016. – выпуск 1 (35). – С. 24 – 29.
  8. Астайкин Д.В. Идентификация законов распределения навигационных погрешностей смешанными законами двух типов / Астайкин Д.В., Алексейчук Б.М. // Автоматизация судовых технических средств: науч. -техн. сб. – 2014. – Вып. 20. Одесса: ОНМА. – С. 3 – 9.
  9. Сикирин В.Е. Описание навигационных погрешностей с помощью обобщенного распределения Пуассона/ Сикирин В.Е.// Судовождение: Сб. научн. трудов. /ОНМА, Вып. 26. – Одесса: «ИздатИнформ», 2016 – С. 152 – 156.
  10. Ворохобин И.И. Разработка теории и методов оценки и повышения надежности судовождения: монография / Ворохобин И.И.- Одесса: НУ «ОМА», 2019 – 308 с.