Issue №37
Contents
Y. Bogachenko, І. Vorokhobin, application of a parabolic controller to improve maneuverability and positioning of self-driven drilling platforms
Abstract
Keywords: self-propelled drilling platform, parabolic controller, insensitive zone, attitude stabilization, dynamic positioning, energy efficiency, external disturbances, adaptive control, marine technology, modeling, drilling operations, autonomous systems, marine environment, PI controller.
References
- Suzuki, R., Ohashi, K., & Ueno, M. (2023). Estimation of steady wave forces and moment acting on an obliquely moving ship in short waves, and its application in a manoeuvring simulation. Applied Mathematical Modelling, 125, 261-292. https://doi.org/10.1016/j.apm.2023.08.046
- Tian, R., Zhang, X., & Liu, X. (2024). Identification modeling of ship manoeuvring motion based on ISSA-SVR. Ocean Engineering, 313, 119364. https://doi.org/10.1016/j.oceaneng.2024.119364
- Zhang, M., Kim, D., Tezdogan, T., & Yuan, Z. (2024). Time-optimal control of ship manoeuvring under wave loads. Ocean Engineering, 293, 116627. https://doi.org/10.1016/j.oceaneng.2023.116627
- Park, J., Lee, D., Park, G., Rhee, S. H., Seo, J., & Yoon, H. K. (2022). Uncertainty assessment of outdoor free-running model tests for maneuverability analysis of a damaged surface combatant. Ocean Engineering, 252, 111135. https://doi.org/10.1016/j.oceaneng.2022.111135
- Liu, D., Gao, X., & Huo, C. (2022). Motion planning for unmanned surface vehicle based on a maneuverability mathematical model. Ocean Engineering, 265, 112507. https://doi.org/10.1016/j.oceaneng.2022.112507
- Liu, J., Chua, K. H., Taskar, B., Liu, D., & Magee, A. R. (2023). Virtual PMM captive tests using OpenFOAM to estimate hydrodynamic derivatives and vessel maneuverability. Ocean Engineering, 286, 115654. https://doi.org/10.1016/j.oceaneng.2023.115654
- Zhang, J., Guo, Z., Zhang, Q., Shang, Y., & Zhang, L. (2023). Turning and zigzag maneuverability investigations on a waterjet-propelled trimaran in calm and wavy water using a direct CFD approach. Ocean Engineering, 286, 115511. https://doi.org/10.1016/j.oceaneng.2023.115511
- Dong, Z., Ding, Y., Liu, W., Hu, Z., Lu, S., & Liu, Y. (2025). Maneuverability parameter identification of a water-jet USV based on truncated weighted LSSVM integrated with adaptive mutation PSO algorithm. Ocean Engineering, 321, 120474. https://doi.org/10.1016/j.oceaneng.2025.120474
- Kim, D., Song, S., & Tezdogan, T. (2024). Assessing the influence of sudden propulsion loss on a ship’s manoeuvrability in various wave heights utilizing CFD. Ocean Engineering, 311, 119022. https://doi.org/10.1016/j.oceaneng.2024.119022
- Gu, Y., Zhou, L., Ding, S., Tan, X., Gao, J., & Zhang, M. (2022). Numerical simulation of ship maneuverability in level ice considering ice crushing failure. Ocean Engineering, 251, 111110. https://doi.org/10.1016/j.oceaneng.2022.111110
- Himaya, A. N., Sano, M., Suzuki, T., Shirai, M., Hirata, N., Matsuda, A., & Yasukawa, H. (2022). Effect of the loading conditions on the maneuverability of a container ship. Ocean Engineering, 247, 109964. https://doi.org/10.1016/j.oceaneng.2021.109964
- Sarigul, D. O., Celik, C., Kinaci, O. K., Sarioz, K., & Goren, O. (2025). A system-based approach to estimate manoeuvring performance of naval ships supported by captive tests in regular waves. Ocean Engineering, 321, 120378. https://doi.org/10.1016/j.oceaneng.2025.120378
- Meng, Y., Zhang, X., Zhang, X., Duan, Y., & Guedes Soares, C. (2025). Nonlinear identification of surface ship manoeuvring motion model and its control application. Ocean Engineering, 321, 120432. https://doi.org/10.1016/j.oceaneng.2025.120432
- Li, S., Liu, C., Chu, X., Zheng, M., Wang, Z., & Kan, J. (2022). Ship maneuverability modeling and numerical prediction using CFD with body force propeller. Ocean Engineering, 264, 112454. https://doi.org/10.1016/j.oceaneng.2022.112454
- Zhou, H., Wei, Z., & Hu, W. (2025). Hydrodynamic performance and maneuverability design for a compound eVTOL configuration based unmanned aerial underwater vehicle. Ocean Engineering, 319, 120210. https://doi.org/10.1016/j.oceaneng.2024.120210
- Yoshimura, Y., Terada, D., Sano, M., & Yasukawa, H. (2023). Effects of strut cover and lower vertical fin in podded propulsion units on ship maneuverability. Applied Ocean Research, 141, 103807. https://doi.org/10.1016/j.apor.2023.103807
- Liu, Y., An, S., Wang, L., Liu, P., Deng, F., Liu, S., Wang, Z., & Fan, Z. (2024). Maneuverability prediction of ship nonlinear motion models based on parameter identification and optimization. Measurement, 236, 115033. https://doi.org/10.1016/j.measurement.2024.115033
- Melnyk, O., Onishchenko, O., Shibaev, O., Konoplov, A., Storchak, O. (2024). The Role and Relevance of Support Fleet Deployment in Marine Operations and Offshore Technologies. In: Shukurov, A., Vovk, O., Zaporozhets, A., Zuievska, N. (eds) Geomining. Studies in Systems, Decision and Control, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-031-70725-4_18
- Melnyk, O., Onishchenko, O., Volianskaya, Y., Yaremenko, N., Volaynskyy, S. (2024). Increasing Maneuverability and Positioning of Self-Propelled Drilling Platforms Using Driving Modules. In: Shukurov, A., Vovk, O., Zaporozhets, A., Zuievska, N. (eds) Geomining. Studies in Systems, Decision and Control, vol. 224. Springer, Cham. https://doi.org/10.1007/978-3-031-70725-4_20
- Onyshchenko, S., Kravchenko, O., Melnyk, O., Steba, A., Nykytyuk, P. (2024). Enhancing the Optimal Fleet Management and Offshore Marine Operations in Subsea Resource Technologies. In: Shukurov, A., Vovk, O., Zaporozhets, A., Zuievska, N. (eds) Geomining. Studies in Systems, Decision and Control, vol. 224. Springer, Cham. https://doi.org/10.1007/978-3-031-70725-4_19
- Bogachenko, Y., Vorokhobin, І., Burmaka, І., Melnyk, O. Onishchenko O. (2024). Dynamic positioning systems: mathematical modeling and control algorithms. Shipping & Navigation, vol. 36, pp. 20-29. https://doi.org/10.31653/2306-5761.36.2024.20-29
B. Alieksieichuk, Determining the effectiveness of observed ship coordinates in the case of their quasi-probabilistic estimates
Abstract
Keywords: navigational safety, efficiency of the coordinates, mixed distribution laws of the first type.
References
[2] V.T. Kondrashikhin Location of ship. M.: Transport, 1989.
[3] V.E. Sikirin, “Description of navigation errors by the generalized distributing of Puasson”, Shipping & Navigation, vol. 26. – pp. 152 – 156, 2016.
[4] D.V. Astayrin., V.E. Sikirin, I.I. Vorokhobin and B.M. Alekseychuk, Estimation of exactness of coordinates of ship at the surplus measuring. Saarbrucken, Deutschland: LAP LAMBERT Academic Publishing, 2017.
[5] I. Vorokhobin, O. Haichenia, V. Sikirin and I. Fusar, “Application of Orthogonal Decomposition of Mixed Laws’ Density Distribution of Navigational Measurement Errors”, In the 25th International Scientific Conference Transport Means 2021 Sustainability: Research and Solutions, 06.10, 2021, pp. 477-481.
[6] I. Vorokhobin, O. Haichenia, V. Sikirin and V. Severin, “Determination of the Law of Probability Distribution of Navigation Measurements”, In the 24th International Scientific Conference Transport Means 2020 Sustainability: Research and Solutions, 30.09,2020, pp. 707-711.
[7] D. Astaykin, A. Golikov, A. Bondarenko, O. Bulgakov, “The Effectiveness of Ship’s Position Using the Laws of Distribution of Errors in Navigation Measurements”, In the 24th International Scientific Conference Transport Means 2020 Sustainability: Research and Solutions, 30.09,2020, pp. 662-666.
[8] B.M. Aliyeksiyeychuk, “Dependence of observation accuracy on significant factors and ways to improve it”, Shipping & Navigation, vol. 36, DOI: 10.31653/2306-5761.36.2024.10-19, pp. 10-19, 2024.
[9] Luis Monteiro, “What is the accuracy of DGPS?”, J. Navig. vol. 58, no. 2, pp. 207-225, 2005.
[10] R. Bober, P. Grodzicki, Z. Kozlowski and A.Wolski, “The DGPS system improves safety of navigation within the port of Szczecin”, In the 12 Saint Petersburg International Conference on Integrated Navigation Systems, 23.05, 2005, pp. 192-194.
[11] I.O. Burmka, B.M. Alekseychuk “Accuracy of the coordinates of the ship’s designated place, calculated by the least squares method, in the times of overworldly worlds” Shipping & Navigation, vol. 35, DOI: 10.31653/2306-5761.35.2023.10-21, pp. 10-21, 2023.
[12] V.M. Mudrov, V.L. Kushko. Methods of treatment of measurings, M.: Sovetskoe radio, 1976.
[13] V.V. Stepanenko. “Efficiency of assessing the parameters of the situation of dangerous approach of ships”, Shipping & Navigation, vol. 2, pp. 201 – 209, 2000.
[14] Kubo Masayoshi, Sakakibara Shigeki, Hasegawa Yoshimi and Nagaoka Tadao. “Research of method of calculation of probability of collision of ship with the rectangular bull of bridge at tearing down by wind and flow”, Jap. Inst. Navig. no. 104, pp. 225-233, 2001.
[15] E. Malić, N. Sikirica, D.Špoljar and R Filjar. “A Method and a Model for Risk Assessment of GNSS Utilisation with a Proof-of-Principle Demonstration for Polar GNSS Maritime Applications”, TransNav, International journal on marine navigation and safety of sea transportation, vol. 17, no. 1, doi:10.12716/1001.17.01.03, pp. 43-50, 2023.
[16] M. Džunda, S. Čikovský and L. Melniková. “Model of the Signal of the Galileo Satellite Navigation System”, TransNav, International journal on marine navigation and safety of sea transportation, vol. 17, no. 1, doi: 10.12716/1001.17.01.04, pp. 51-59, 2023.
[17] M. Džunda, S. Čikovský and L. Melniková. “Model of the Random Phase of Signal E6 of the Galileo Satellite Navigation System”, TransNav, International journal on marine navigation and safety of sea transportation, vol. 17, no. 1, doi:10.12716/1001.17.01.05, pp. 61-68, 2023.
[18] M. Džunda. “Model of the Motion of a Navigation Object in a Geocentric Coordinate System”, TransNav, International journal on marine navigation and safety of sea transportation, vol. 15, no. 4, doi:10.12716/1001.15.04.10, pp. 791-794, 2021.
[19] I. Pavić, J. Mišković, J. Kasum and D. Alujević. “Analysis of Crowdsourced Bathymetry Concept and It’s Potential Implications on Safety of Navigation”, TransNav, International journal on marine navigation and safety of sea transportation, vol. 14, no. 3, doi:10.12716/1001.14.03.21, pp. 681-686, 2020.
[20] W. Filipowicz. “Position Fixing and Uncertainty”, TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, vol. 17, no. 4, doi:10.12716/1001.17.04.15, pp. 887-893, 2023.
A. Ben, Priority directions of development and ways of improving decision support systems in navigation
Abstract
Keywords: decision support systems, navigation, decision-making methods, navigation safety, ship control, human factor, shipmaster model.
References
- A. P. Ben, “Decision support systems in ship navigation: current state and prospects for further development,” Scientific Bulletin of the Kherson State Maritime Academy, no. 1(28), pp. 152–162, 2024. [Online]. Available: https://doi.org/10.33815/2313-4763.2024.1.28.152-162
- A. P. Ben, “Decision-making methods for ship traffic control in intelligent navigational information systems,” Scientific Bulletin of the Kherson State Maritime Academy, no. 2(29), pp. 99–110, 2024. [Online]. Available: https://doi.org/10.33815/2313-4763.2024.2.29.099-110
- A. S. Maltsev and A. P. Ben, Decision support systems for ship traffic control. Kherson: KhSMA Publishing, 2019, 244 p.
- A. P. Ben and I. V. Palamarchuk, “Principles of building decision support systems for shipmasters within the e-Navigation concept,” Scientific Bulletin of the Kherson State Maritime Academy, no. 2(13), pp. 19–24, 2015.
- Lazarowska A. A trajectory base method for ship’s safe path planning/ 20th International Conference on Knowledge Based and Intelligent Information and Engineering Systems, Procedia Computer Science 96 (2016), 1022-1031. https://doi.org/10.1016/j.procs.2016.08.118.
- Lisowski J. Dynamic games methods in navigator decision support system for safety navigation. Advances in Safety and Reliability. Vol. 2. Р. 1285-1292.
- Timchenko V., Kondratenko Y., Kreinovich V. Decision Support System for the Safety of Ship Navigation Based on Optical Color Logic Gates // Information Technology and Implementation (IT&I-2022), pp. 42–
- Krata P., Kniat A., Vettor R., Krata H., Guedes Soares C. The Development of a Combined Method to Quickly Assess Ship Speed and Fuel Consumption at Different Powertrain Load and Sea Conditions. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. 2021. Vol. 15, № 2. Р. 437– https://doi.org/10.12716/1001.15.02.23.
- Cai Y., Wen Y.Q.: Ship Route Design for Avoiding Heavy Weather and Sea Conditions. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. Vol. 8, № 4. Р. 551-556. https://doi.org/10.12716/1001.08.04.09.
- V. Palamarchuk, “Modeling of ship encounter situations in the decision support system for shipmasters,” Scientific Bulletin of the Kherson State Maritime Academy, no. 1(22), pp. 45–53, 2020. [Online]. Available: https://doi.org/10.33815/2313-4763.2020.1.22.045-053
- G. Yakusevych, V. V. Tryshyn, and Z. Ya. Dorofieieva, “Development of a ship navigation system based on modern information technologies,” Cybernetics and Systems Analysis, no. 4(70), pp. 83–88, 2021. [Online]. Available: https://doi.org/10.30748/zhups.2021.70.12
- Aylward K., Weber R., Lundh M., MacKinnon S. N., Dahlman J. Navigators’ views of a collision avoidance decision support system for maritime navigation. The Journal of Navigation 75: 5, 2022. 1035– https://doi.org/10.1017/S0373463322000510.
- V. Nikolskiy, M. V. Nikolskiy, and Yu. A. Nakul, “Decision support system for loading a large-capacity container ship,” Scientific Works of Petro Mohyla Black Sea State University. Series: Computer Technologies, vol. 283, no. 271, pp. 60–63, 2016.
- Kebedow K. G., Oppen J. Including Containers with DangerousGoods in the Multi-Port Master Bay Planning Problem. MENDEL. vol. 24. no. 2. Р. 23-36. https://doi.org/10.13164/mendel.2018.2.023.
- Carlo H. J., Vis I. F. A., Roodbergen K. J. Transport operations in container terminals: Literature overview, trends, research directions and classification schemEuropean Journal of Operational Research. 2014. vol. 236, no. 1. Р. 1–13.http://dx.doi.org/10.1016/j.ejor.2013.11.023.
- Rodriguez-Molins M., Salido M.A., Barber F. Intelligent planning for allocating containers in maritime terminals.Expert Systems with Applications. 2012. 39(1). Р. 978–989. https://doi.org/10.1016/j.eswa.2011.07.098.
- Yishan L., Zhiqiang G., Jie Y. et al. Prediction of ship collision risk based on CART. IET Intelligent Transport Systems. 2018. Vol. 12. Issue 10.
pp. 1345-1350. https://doi.org/10.1049/iet-its.2018.5281. - Dugan S. A., Skjetne R., Wróbel K., Montewka J., Gil M., Utne I. B. Integration Test Procedures for a Collision Avoidance Decision Support System Using STPA. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. 2023. Vol. 17, № 2. Р. 375– https://doi.org/ 10.12716/1001.17.02.14.
- Huang Y., Chen L., Chen P., Negenborn R. R., Van Gelder PHAJM. Ship collision avoidance methods: state-of-the-art. Safety Science, 2020,121, Р. 451–4 https://doi.org/10.1016/j.ssci.2019.09.018.
- Li Y., Song G., Yip T.-L., Yeo G.-T. Fuzzy Logic-Based Decision-Making Method for Ultra-Large Ship Berthing Using Pilotage Data Mar. Sci. Eng. 2024, 12, 717. https://doi.org/10.3390/jmse12050717.
- Pietrzykowski Z., Wołejsza P., Borkowski P. Decision support in collision situations at sea. Navig. 2017. Vol. 70. P. 447–464. https://doi.org/10.1017/S0373463316000746.
- Koyama T. and Yan J. An expert system approach to collision avoidance, 8th Ship Control System Symposium, Hague, 1987.
- Smeaton G. , Coenen F. Developing an intelligent marine navigation system. Computing & Control Engineering Journal. 1990. Vol. 1. Issue 2. P. 95-103. https://doi.org/10.1049/cce:19900024.
- L. Vagushchenko, Ship Navigational-Information Systems, Odesa: NU “OMA”, 2016, 238 p.
- L. Vagushchenko and A. L. Vagushchenko, Decision Support for Ship Encounter Avoidance, Kharkiv: Feniks, 2010, 229 p.
- V. Leleko, “Ways to improve the quality of operator interaction with the dynamic positioning system,” Scientific Bulletin of Kherson State Maritime Academy, no. 1(18), pp. 27–33, 2018.
- Nosov P.S., Ben A.P., Safonova A.F., Palamarchuk I.V. Approaches going to determination periods of the human factor of navigators during supernumerary situations. Науковий журнал «Радіоелектроніка, інформатика, управління». № 2 (49). https://doi.org/10.15588/1607-3274-2019-2-15.
- MacKinnon S. N., Weber R., Olindersson F. and LundhArtificial Intelligence in Maritime Navigation: A Human Factors Perspective/In book: Advances in Human Aspects of Transportation, N. Stanton (Ed.): AHFE 2020, AISC 1212, pp. 429–435. https://doi.org/10.1007/978-3-030-50943-9_54.
- Zhang M. Big data analytics methods for collision and grounding risk analysis in real conditions: framework, evaluation, and applications. Aalto University; Doctoral thesis, 2023, 202 р.р.
- Guidelines for formal safety assessment (FSA) for use in the imo rule-making process. London, UK: International Maritime Organization – MSC/Circ.1023- MEPC/Circ.392, 2002.
- ISO 31000:2018. Risk management – guidelines. International Organization for Standardization, 2018.
- Convention on the international regulations for preventing collisions at Sea, 1972 (COLREGs).
- Maritime safety committee POLARIS – proposed system for determining operational limitations in ice. In: Submitted by the International Association of Classification Societies, MSC 94/3/7,9th Session, Agenda 3, September 12; 2014. 2014.
- Outcome of the regulatory scoping exercise for the use of maritime autonomous surface ships (MASS) – MSC.1-Circ.1638, London, UK. 2021.
- Du L, Goerlandt F, Kujala P. Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data. Reliability Engineering and System Safety, 200, 2020, 106933. https://doi.org/10.1016/j.ress.2020.106933.
- Tunçel A. L., Yüksekyıldız E., Akyuz E., & Arslan O. Probability-based extensive quantitative risk analysis: collision and grounding case studies for bulk carrier and general cargo ships. Australian Journal of Maritime & Ocean Affairs, 15(1), 89–105. https://doi.org/10.1080/18366503.2021.1994191.
- Başhan, V., Demirel, H. & Gul, M. An FMEA-based TOPSIS approach under single valued neutrosophic sets for maritime risk evaluation: the case of ship navigation safety. Soft Computing, 24, 2020, 18749–18764. https://doi.org/10.1007/s00500-020-05108-y.
- Bünyamin Kamal, Erkan Çakır, Data-driven Bayes approach on marine accidents occurring in Istanbul strait, Applied Ocean Research, 2022, Volume 123, 103180. https://doi.org/10.1016/j.apor.2022.103180.
- Axel Hörteborn, Jonas W. Ringsberg, A method for risk analysis of ship collisions with stationary infrastructure using AIS data and a ship manoeuvring simulator, Ocean Engineering, 2021, Volume 235, 109396. https://doi.org/1016/j.oceaneng.2021.109396.
- Leveson N. Engineering a safer world: systems thinking applied to safety. The MIT Press, 2016. p. 560.
- Kujala P., Hänninen M., Arola T., Ylitalo J. Analysis of the marine traffic safety in the Gulf of Finland, Reliability Engineering & System Safety, Vol. 94, Issue 8, 2009, 1349–1357. DOI: https://doi.org/10.1016/j.ress.2009.02.028.
- Wu B., Yip T. L., Yan X., Soares C. Review of techniques and challenges of humanand organizational factors analysis in maritime transportation. Reliability Engineering and System Safety, 2022, 219:108249. https://doi.org/10.1016/j.ress.2021.108249.
- Sang Jin Kim, Mihkel Kõrgersaar, Nima Ahmadi, Ghalib Taimuri, Pentti Kujala, Spyros Hirdaris,The influence of fluid structure interaction modelling on the dynamic response of ships subject to collision and grounding,Marine Structures, Vol. 75, 2021, 102875. https://doi.org/10.1016/j.marstruc.2020.102875.
- Abudu R., Bridgelall R.Autonomous Ships: A Thematic Review. World 2024, 5, Р. 276–292. https://doi.org/10.3390/world5020015.
Yan X., Li C., Liu J., You X., Wang S., Ma F. Architecture and key technologies for new generation of waterborne transportation system. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5):22. https://doi.org/10.16097/j.cnki.1009-6744.2021.05.003.
O. Shyshkin , O. Pashenko, V. Kuprovskyy, Development of maritime VHF radiocommunications for efficient and safe navigation
DOI: 10.31653/2306-5761.37.2025.47-62 | PDF
Abstract
Keywords: VHF Data Exchange System (VDES), Automatic Identification System (AIS), Application Specific Messages (ASM), e-navigation, Global Maritime Distress and Safety System (GMDSS), Digital Selective Calling (DSC).
References
[2] G1139 – The Technical Specification of VDES. Guideline / IALA. – Ed. 3. – 2019. – URL: https://www.e-navigation.nl/sites/default/files/1139-ed.3-the-technical-specification-of-vdes_june-2019.pdf
[3] G1181 – VDES VHF Data Link (VDL) Integrity Monitoring. IALA Guideline. – Ed. 1.0. – 2023. – URL: https://www.iala.int/product/g1181-vdes-vdl-integrity-monitoring
[4] Golaya A. P., Yogeswaran N. Maritime communication: From flags to the VHF Data Exchange System (VDES) // Maritime Affairs. – 2020. – DOI: 10.1080/09733159.2020.1845456
[5] Goudossis A., Katsikas S. K. Towards a secure automatic identification system (AIS) // Journal of Marine Science and Technology. – 2018. – Vol. 24, № 6. – P. 410–423. – DOI: 10.1007/s00773-018-0561-3
[6] IMO. Resolution MSC.496(105). Amendments to the SOLAS Convention. – 2022.
[7] International Maritime Organization. Guidance on the Use of AIS Application Specific Messages: SN.1/Circ.289. – 2010.
[8] International Telecommunication Union. Radio Regulations. – Vol. 1. – 2024.
[9] Karahalios H. Appraisal of a Ship’s Cybersecurity efficiency: the case of piracy // Journal of Transportation Security. – 2020. – Vol. 13. – P. 179–201. – DOI:10.1007/s12198-020- 00223-1
[10] Kessler G. C. Protected AIS: A Demonstration of Capability Scheme to Provide Authentication and Message Integrity // TransNav. – 2020. – Vol. 14, № 2. – P. 279–285.
[11] Korcz K. Some Aspects of the Modernization Plan for the GMDSS // TransNav. – 2017. – Vol. 11, № 1.
[12] Koshevyy V., Shyshkin O. Standardization of Interface for VHF, MF/HF Communication Using DSC within Its Integration with INS in the Framework of e-Navigation Concept // TransNav. – 2019. – Vol. 13, № 3. – P. 593–596.
[13] Lázaro F., Raulefs R., Wang W. et al. VHF Data Exchange System (VDES): an enabling technology for maritime communications // CEAS Space Journal. – 2019. – Vol. 11. – P. 55–63. – DOI: 10.1007/s12567-018-0214-8
[14] Li M., Zhou J., Chattopadhyay S., Goh M. Maritime Cybersecurity: A Comprehensive Review // IEEE Trans. on Intelligent Transportation Systems. – 2024. – URL: https://arxiv.org/abs/2409.11417
[15] Meland P. H. et al. A Retrospective Analysis of Maritime Cyber Security Incidents // TransNav. – 2021. – Vol. 15, № 3. – P. 519–530.
[16] Molina N., Cabrera F., Tichavska M. An Overview About the Physical Layer of the VHF Data Exchange System (VDES) // EUROCAST 2019 Conference Proceedings. – 2019. – P. 67–74.
[17] Moltsen L. Overseas satellite VDES development plans and international alliances. – 2024. – URL: https://vdes.jp/site/wp-content/uploads/2024/05/Sternula-Lars-Moltsen.pdf] Deng, W., Ma, X., & Qiao, W. (2024). A novel methodology to quantify the impact of safety barriers on maritime operational risk based on a probabilistic network. Reliability Engineering & System Safety, 243, 109884. https://doi.org/10.1016/j.ress.2023.109884
[18] Moltsen L., Pielmeier S. AIS 2.0 – A New Maritime Telecommunications Network // Autonomous Ships Conference. – 2022. – 31 March–1 April. – London. – URL: https://www.sternula.com/wp-content/uploads/2022/09/2022-04-01-AIS-will-be-an-IoT-network-1.pdf
[19] Recommendation ITU-R M.1371. Technical characteristics for an automatic identification system using TDMA. – 2014.
[20] Recommendation ITU-R M.2092-0. VHF Data Exchange System. – 2015.
[21] Recommendation ITU-R M.2092-1. VHF Data Exchange System. – 2022.
[22] Recommendation ITU-R M.493-15. Digital selective-calling system. – 2019.
[23] Report ITU-R M.2231-1. Use of Appendix 18 to the Radio Regulations. – 2014.
[24] Report ITU-R M.2435-0. Technical studies on the satellite component of the VHF data exchange system. – 2018. – URL: https://www.e-navigation.nl/sites/default/files/r-rep-m.2435-2018-pdf-e.pdf
[25] Shyshkin O. Cybersecurity Providing for Maritime Automatic Identification System // IEEE ELNANO 2022 Conference Proceedings. – Kyiv, 2022. – P. 736–740.
[26] Walter M. et al. Visualisation of cyber vulnerabilities in maritime human-autonomy teaming technology // WMU Journal of Maritime Affairs. – 2025. – Vol. 24. – P. 5–31. – DOI: 10.1007/s13437-025-00362-z
[27] Westbrook Tegg. Lethal empowerment and electronic crime: A focus on radio-frequency interference capabilities // Security and Defence Quarterly. – 2025. – DOI: 10.35467/sdq/196515
[28] Wimpenny G., Lázaro F., Šafář J., Raulefs R. A pragmatic approach to VDES authentication // NAVIGATION. – 2025. – Vol. 72, № 1. – DOI: 10.33012/navi.681
[29] Wu Z. et al. Application Prospects and Challenges of VHF Data Exchange System (VDES) in Smart Fisheries // J. Mar. Sci. Eng. – 2025. – Vol. 13. – Article 250. – DOI: 10.3390/jmse13020250
M. Miyusov, O. Kryvyi, Influence of vessel speed on the thrust and power of auxiliary wind propulsors
DOI: 10.31653/2306-5761.37.2025.63-77 | PDF
Abstract
Keywords: ship’s propulsion system, ship speed, wind speed and direction, wind propulsor, aerodynamic characteristics, thrust and power of the wind propulsor.
References
[2] O. F. Kryvyi, Metody matematychnoho modeliuvannia v zadachakh sudnovodinnia, ONMA, Odesa. 2015.
[3] M. V. Myusov, A. F. Kryvoy, “Metody optimizatsii rezhimiv roboty sudnovogo propul’sivnogo kompleksa”, Sudnovi energetychni ustanovky, no. 8, pp. 39-48, 2003.
[4] A. F. Kryvoy, M. V. Miyusov, “Matematicheskaya model ploskogo dvizheniya sudna pri nalichii vetrodvizhitelyey”, Sudnovodinnya, no. 26, pp. 110-119, 2016.
[5] T. Fujiwara, G. Hearn, F. Kitamura, et al. “Sail–sail and sail–hull interaction effects of hybrid-sail assisted bulk carrier”. J Mar Sci Technol, vol. 10, pp. 82–95, 2005. https://doi.org/10.1007/s00773-005-0191-4.
[6] I. M. Viola, M. Sacher, J. Xu, F. Wang. “A numerical method for the design of ships with wind-assisted propulsion”, Ocean Engineering, vol. 105: pp. 33-42, 2015. https://doi.org/10.1016/j.oceaneng.2015.06.009.
[7] P. Kindberg Wind-powered auxiliary propulsion in cargo ships. Helsinki Metropolia University of Applied Sciences. Bachelor of Engineering Environmental engineering. 2015. https://urn.fi/URN:NBN:fi:amk-2015090914465
[8] Qiao Li, at all. “A study on the performance of cascade hard sails and sail-equipped vessels”, Ocean Engineering, vol. 98, pp. 23-31, 2015. https://doi.org/10.1016/ j.oceaneng.2015.02.005.
[9] M. Bentin, at all. “A New Routing Optimization Tool-influence of Wind and Waves on Fuel Consumption of Ships with and without Wind Assisted Ship Propulsion Systems”, Transportation Research Procedia, vol. 14, pp. 153-162, 2016. https://doi.org /10.1016/j.trpro.2016.05.051
[10] I.S. Seddiek, N.R. Ammar, “Harnessing wind energy on merchant ships: case study Flettner rotors onboard bulk carriers”, Environ Sci Pollut Res, vol.28, pp. 32695–32707, 2021. https://doi.org/10.1007/s11356-021-12791-3
[11] G. Atkinson, H. Nguyen, J. Binns & D. Pham, “Considerations regarding the use of rigid sails on modern powered ships”. Cogent Engineering, vol. 5, no.1, 2018. https://doi.org/ 10.1080/23311916.2018.1543564
[12] G. Atkinson, & J. Binns, “Power profile for segment rigid sail”, Journal of Marine Engineering & Technology, vol. 17, no. 2, pp. 99–105, 2018. https://doi.org/10.1080/20464177.2017.1319997
[13] G. Atkinson, “Analysis of lift, drag and CX polar graph for a 3D segment rigid sail using CFD analysis”, Journal of Marine Engineering & Technology, vol. 18, no.1, pp.36–45, 2019. https://doi.org/10.1080/20464177.2018.1494953
[14] O. F Kryvyi, M. V. Miyusov (2019). Mathematical model of hydrodynamic characteristics on the ship’s hull for any drift angles. Advances in Marine Navigation and Safety of Sea Transportation. CRC Press: 111-117. https://doi. org/10.1201/9780429341939
[15] R. Lu, & J. W. Ringsberg, “Ship energy performance study of three wind-assisted ship propulsion technologies including a parametric study of the Flettner rotor technology”, Ships and Offshore Structures, vol. 15, no. 3, pp. 249–258. 2020. https://doi.org/10.1080/17445302.2019.1612544
[16] N. I. B. Ariffin and M. A. Hannan, “Wingsail technology as a sustainable alternative to fossil fuel,” IOP Conf. Ser.: Mater. Sci. Eng. 788 012062. 2020. Doi: 10.1088/1757-899X/788/1/012062
[17] J. Cairns, at all. “Numerical optimisation of a ship wind-assisted propulsion system using blowing and suction over a range of wind conditions,” Ocean Engineering, vol. 240, 2021, https://doi.org/10.1016/j.oceaneng.2021.109903.
[18] O. Kryvyi, M. V. Miyusov, “Construction and Analysis of Mathematical Models of Hydrodynamic Forces and Moment on the Ship’s Hull Using Multivariate Regression Analysis,” Trans Nav, the International Journal on Marine Navigation and Safety of Sea Transportation, vol. 15, no. 4, pp. 853-864, 2021. doi:10.12716/1001.15.04.18
[19] K. Wang, et al. “Joint energy consumption optimization method for wing-diesel engine-powered hybrid ships towards a more energy-efficient shipping”, Energy, Elsevier, vol. 245(C). 2022. DOI: 10.1016/j.energy.2022.123155.
[20] Y. Wang, et al. “Analysis on the Development of Wind-assisted Ship Propulsion Technology and Contribution to Emission Reduction”, IOP Conf. Ser.: Earth Environ. Sci, 2022, 966 012012. DOI 10.1088/1755-1315/966/1/012012
[21] N. R. Ammar & I. S. Seddiek, ‘Wind assisted propulsion system onboard ships: case study Flettner rotors”, Ships and Offshore Structures, vol. 17, no. 7, 1616–1627. 2022. https://doi.org/10.1080/17445302.2021.1937797
[22] De. C. Beukelaer, “Tack to the future: is wind propulsion an ecomodernist or degrowth way to decarbonise maritime cargo transport”, Climate Policy, vol. 22, no. 3, pp. 310–319, 2022. https://doi.org/10.1080/14693062.2021.1989362
[23] J. V. Kramer, S. Steen, “Sail-induced resistance on a wind-powered cargo ship”, Ocean Engineering, vol. 261, 111688, 2022. https://doi.org/10.1016/j.oceaneng.2022.111688.
[24] O. Kryvyi, M. V. Miyusov, M. Kryvyi, “Construction and Analysis of New Mathematical Models of the Operation of Ship Propellers in Different Maneuvering Modes”, Trans Nav, the International Journal on Marine Navigation and Safety of Sea Transportation, vol. 17, no. 1, pp. 853-864, 2023. doi:10.12716/1001.17.01.09
[25] O. Kryvyi, M. V. Miyusov, M. Kryvyi, “Analysis of Known and Construction of New Mathematical Models of Forces on a Ship’s Rudder in an Unbounded Flow Analysis,” Trans Nav, the International Journal on Marine Navigation and Safety of Sea Transportation, vol. 17, no. 4, pp. 831-839, 2023. DOI:10.12716/1001.17.04.09
[26] M. Reche-Vilanova, H. Hansen, &, H. B. Bingham. “Performance Prediction Program for Wind-Assisted Cargo Ships,” J Sailing Technol, vol. 6, pp. 91–117, 2021. doi: https://doi.org/10.5957/jst/2021.6.1.91
[27] Thies, F., & Ringsberg, J. W. Wind-assisted, electric, and pure wind propulsion – the path towards zero-emission RoRo ships. Ships and Offshore Structures, 18(8), 2023. 1229–1236. https://doi.org/10.1080/17445302.2022.2111923
[28] M. Ghorbani, P. Slaets, J. Lacey, “A numerical simulation tool for a wind-assisted vessel verified with logged data at sea”, Ocean Engineering, vol. 290, 116319, 2023, https://doi.org/10.1016/j.oceaneng.2023.116319
[29] Cong Wang, at all. A novel cooperative optimization method of course and speed for wing-diesel hybrid ship based on improved A* algorithm, Ocean Engineering, 302, 2024, 117669, https://doi.org/10.1016/j.oceaneng.2024.117669.
[30] M. V. Miyusov, O. F. Kryvyi, “Optymalne upravlinnia kombiinovanym propulsyvnym kompleksom sudna z vitrorushiiamy”, Sudnovodinnia, vyp. 36, pp. 116–130, 2024. DOI: 10.31653/2306-5761.36.2024.116-130.
D. Zhukov, Comprehensive consideration of hazard factors to ensure safe navigation in pressure waters
DOI: 10.31653/2306-5761.37.2025.78-91 | PDF
Abstract
Keywords: navigational safety, navigational accident factors, accuracy field, navigational situation.
References
[2] Vagushchenko L.L., Divergence with vessels by shifting to a parallel track line, Odesa: Feniks, 2013.
[3] Jesús A., García Maza, Reyes Poo Argüelles, “COLREGs and their application in collision avoidance algorithms: A critical analysis”, Ocean Engineering, nn. 261, pp. 1-14, 2022.
[4] Lisowski J., “Dynamic games methods in navigator decision support system for safety navigation”, Advances in Safety and Reliability, Vol. 2, pp. 1285-1292, 2005.
[5] Lisowski J. “Game control methods in navigator decision support system”, The Archives of Transport, Vol. XVII, nn. 3, pp. 133-147, 2005.
[6] Eriksen B-OH., Bitar G., Breivik M. and Lekkas A.M., “Collision Avoidance for ASVs Compliant With COLREGs Rules 8 and 13–17”, Front. Robot. , 2020.
[7] Lisowski J., “Game and computational intelligence decision making algorithms for avoiding collision at sea”, Proc. of the IEEE Int. Conf. on Technologies for Homeland Security and Safety, 2005, pp. 71 – 78.
[8] Ahmed Y.A., Hannan M.A., Oraby M.Y., A. Maimun, “COLREGs Compliant Fuzzy-Based Collision Avoidance System for Multiple Ship Encounters”, J. Mar. Sci. Eng, nn. 9, 2021.
[9] Statheros T., Howells G., McDonald-Maier K., “Autonomous ship collision avoidance navigation concepts, technologies and techniques”, J. Navig., v. 61, nn. 1, pp. 129-142, 2008.
[10] Huang Y., Chen L., Chen P., Negenborn R.R. & van Gelder P.H., “Ship collision avoidance methods: State-of-the-art”, Safety Science, nn. 121, pp. 451-473, 2020.
[11] Lazarowska A., “Review of Collision Avoidance and Path Planning Methods for Ships Utilizing Radar Remote Sensing”, Remote Sens, nn.13, pp. 32-65, 2021.
[12] Vagushchenko L., Vagushchenko A., “Graphical Tools to Facilitate the Selection of Manoeuvres to Avoid Collision”, TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 17, No. 3, doi:10.12716/1001.17.03.14, pp. 625-633, 2023.
[13] Martelli M., Žuškin S., Zaccone R., Rudan I., “A COLREGs-Compliant Decision Support Tool to Prevent Collisions at Sea”, TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 17, No. 2, doi:10.12716/1001.17.02.11, pp. 347-353, 2023.
[14] Pyatakov V. E., Petrychenko О.А., Kalyuzhniy V.V., ” Method of successive divergence of a vessel with two dangerous targets “, Avtomatizatsiya sudovyh tehnicheskih sredstv, № 24. pp. 81-87, 2018.
[15] Petrychenko Е.А., Petrychenko О.А. ” Development of a ship’s information system for collision avoidance “, Sudovozhdenie, Vyp. 28, pp. 120-130, 2018.
[16] Benedict K., Kirchhoff M., Gluch M., Fischer S., Baldauf M., “Maneuvering Simulation on the Bridge for Predicting Motion of Real Ships and as Training Tool in Ship Handling Simulators”, TransNav, International magazine on marine navigation and safety of marine transport, Vol. 3, nn. 1, pp. 25-30, 2009.
[17] Benedict K., Kirchhoff M., Gluch M., Fischer S., Schaub M., Baldauf M., Klaes S., “Simulation Augmented Manoeuvring Design and Monitoring – a New Method for Advanced Ship Handling”, TransNav, International magazine on marine navigation and safety of marine transport, Vol. 8, nn. 1, DOI:10.12716/1001.08.01.15, pp. 131-141, 2014.
[18] Shi C.J., Zhao D., Peng J., Shen C., “Identification of Ship Maneuvering Model Using Extended Kalman Filters”, TransNav, International magazine on marine navigation and safety of marine transport, Vol. 3, nn. 1, pp. 105-110, 2009.
[19] Ljacki M., “Intelligent Prediction of Ship Maneuvering”, International magazine on marine navigation and safety of marine transport, Vol. 10, nn. 3, DOI:10.12716/1001.10.03.17, pp. 511-516, 2016.
[20] Kalinichenko Y., Burmaka I., “Analysis of mathematical models of changing the vessel’s course when turning”, Eastern-European Journal of Enterprise Technologies, 6/9(84), D0I: 10.15587/1729-4061.2016.85839, pp. 20-31, 2016.
[21] Kalinichenko Y.V., “Accounting for turning characteristics when calculating vessel turning parameters “, Vodniy tranport. №2 (20), pp. 63 – 67, 2014.
[22] Kalinichenko Y.V., “Ensuring the required accuracy of vessel turning by moving its curved trajectory “, Avtomatizatsiya sudovyh tehnicheskih sredstv, № 20, pp. 52-58, 2014.
[23] Vorokhobin I.I., Каzак Y.V., Severin V.V., Assessment of navigation safety when vessels are sailing in confined waters. Saarbrucken, Deutschland:– LAP LAMBERT Academic Publishing, 2018.
[24] Severin V.V., ” Assessment of the probability of safe vessel navigation along a confined route “, Science and Education a New Dimension. Natural and Technical Sciences, V(16), Issue: 148, pp. 94 -98, 2017.
[25] Vorokhobin I.I., “The influence of the law of distribution of lateral deviation error on the probability of safe passage of a vessel along a confined route “, East European Scientific Journal, №5 (33), pp. 30 – 37, 2018.
[26] Buzovskiy D.А., “Simulation modeling of the influence of the structure of an inverted-type radar system on the accuracy of vessel position control”, Sudovozhdenie, № 12. pp. 19 – 25, 2006.
[27] Kondrashikhin V.T. Location of ship. M.: Transport, 1989.
Y. Vlasenko, A. Pechenyuk, T. Stetsiuk, A concept of dry-cargo vessel for estuaries of european rivers based on national experience in designing ships of restricted navigation area
DOI: 10.31653/2306-5761.37.2025.92-108 | PDF
Abstract
Keywords: ships of restricted navigation area, design of river-sea ships, CFD simulation of ships, hull form optimization, ship propulsion.
References
[2] Hordiienko O.L., Pechenyuk A.V., “Development of propulsion solutions for river-sea ships of the northern Black Sea”, Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, No. 238 (2), doi: 10.1177/14750902231203443, pp. 325-335, 2024.
[3] Egorov G.V., Egorov A.G., “Basic designing principles of river-sea cargo vessels construction”, Shipbuilding and Marine Infrastructure, No. 2 (2), pp. 37-52, 2014.
Національний університет «Одеська морська академія» 143
[4] Egorov G.V., Baskakov S.M., Egorov A.G., Boiko I.M., V.O. Nylva, “Peredumovy stvorennia i kontsepty novoho pokolinnia sukhovantazhnykh suden zmishanoho rika-more plavannia dlia Ukrainy”, Herald of the ONMU, No. 35 (2), pp. 12-44, 2012.
[5] Egorov G.V., Tonyuk V.I., Egorov A.G., Davydov I.F., “Justification of main characteristics of river-sea dry-cargo vessels with extra-full hull forms”, In Proc. of 18th Int. Congress of IMAM (IMAM-2019): Sustainable Development and Innovations in Marine Technologies, doi: 10.1201/9780367810085,pp. 332–337, 2019.
[6] Davydov I.F., Demidyuk A.V., Pechenyuk A.V., “Experimental investigation of the improved hull lines for the slow-speed vessel with high block coefficient”, Shipbuilding and Marine Infrastructure, No. 2 (4), pp. 144-150, 2015.
[7] Egorov A.G., “Otsinka efektyvnosti ekspluatatsii perspektyvnoho barzhe-buksyrnoho skladu «Dnipro-maks» klasu”, Herald of the ONMU, No. 36 (3), pp. 35-54, 2012.
[8] Federal Waterways Engineering and Research Institute, Driving dynamics of inland vessels: Vessel behavior on European inland waterways and waterway infrastructure with special respect to German waterways. Karlsruhe: BAW, 2016.
[9] European waterways routable map for Garmin receivers [Online]. Available: http://waterways.cz/documents/AGN_map_2018.pdf. [Accessed April 16, 2025].
[10] Larsson L., Raven H.C., Paulling R., ed., Ship resistance and flow. Jersey City, NJ: Society of Naval Architects and Marine Engineers, 2010.
[11] Shipping register of Ukraine, Rules for the classification and construction of ships: Part I Classification. Kyiv: The, Shipping register of Ukraine 2020.
[12] Molland A.F., Turnock S.R. and Hudson D.A., Ship resistance and propulsion: practical estimation of ship propulsive power. New York, NY: Cambridge University Press, 2011.
[13] Pechenyuk A.V. and Stetsiuk T.G., “Otrymannia hidrodynamichnykh kharakterystyk hrebnykh hvyntiv u vilnii vodi za dopomohoiu chyselnoho modeliuvannia”, In Proc. of scient. and tech/ conf. of NU “OMA” “Navigation, shipping and technology” NST-2023 ’11, 2023, pp. 234–236.
[14] Pechenyuk A., “Study of seakeeping performance of fishing vessels with the help of CFD methods”, Shipping & Navigation, No. 33, doi: 0.31653/2306-5761.33.2022.96-105, pp. 96–105, 2022.
[15] Oosterveld M.W.C, “Wake adapted ducted propellers”, Netherlands Ship Model Basin, Wageningen, the Netherlands, Issue No. 345, 1970.
O. Shyshkin, V. Konovets, Authentication of automatic identification system messages based on the use of digital watermarking technology
DOI: 10.31653/2306-5761.37.2025.109-122 | PDF
Abstract
Keywords: cryptography, message authentication code, radio channel, algorithm, transponder.
References
[2] Anderson, J., Lo, S., & Walter, T. (2022, January). Efficient and Secure Use of Cryptography for Watermarked Signal Authentication. 2022 International Technical Meeting of The Institute of Navigation, Long Beach, California, pp. 68-82. DOI: 10.33012/2022.18228
[3] Anderson, J., Lo, S., & Walter, T. (2024, September). Authentication Security of Combinatorial Watermarking for GNSS Signal Authentication. NAVIGATION, 71(3). DOI: 10.33012/navi.655
[4] Androjna, A., Perkovič, M., Pavic, I., Mišković, J. (2021). AIS Data Vulnerability Indicated by a Spoofing Case-Study. Applied Sciences. 11(11):5015.
[5] Androjna, A., Pavić, I., Gucma, L., Vidmar, P., & Perkovič, M. (2023, December 19). AIS Data Manipulation in the Illicit Global Oil Trade. Journal of Marine Science and Engineering, 12(1), 6. DOI: 10.3390/jmse12010006
[6] Balduzzi, M., Pasta, A., & Wilhoit, K. (2014, December). A Security Evaluation of AIS Au-tomated Identification System. 30th Annual Computer Security Applications Conference (ACSAC ’14), New Orleans, Louisiana, December 8-12, 2014, pp. 436-445.
[7] Bernard Sklar. Digital Communications: Fundamentals and Applications, Ed. 3, Pearson, 2021, 1136 p.
[8] Cox, I., Miller, M., Bloom, J., Fredrich, J., and Kalker, T. (2008). Digital Watermarking and Steganography, Second Edition. Elsevier Science. doi: 10.1016/B978-012372585-1.50015-2
[9] Duan, Y., Huang, J., Lei, J., Kong, L., Lv, Y., Lin, Z., Chen, G., & Kha, M.K. (2023, Febru-ary). AISChain: Blockchain-Based AIS Data Platform With Dynamic Bloom Filter Tree. IEEE Transactions on Intelligent Transportation Systems, 24(2), 2332-2343. DOI: 10.1109/TITS.2022.3188691
[10] G1117 – VHF Data Exchange System (VDES) / IALA, Edition 3.0, December 2022,
[11] Goudosis, A., Katsikas, S. (2022). Secure Automatic Identification System (SecAIS): Proof-of-Concept Implementation. Journal of Marine Science and Engineering. 10(6):805.
[12] International Standard ISO/IEC 29192-6 Reference number ISO/IEC 29192-6:2019(E) In-formation technology – Lightweight cryptography – Part 6: Message authentication codes (MACs)
[13] International standard ISO/IEC 29192-6. Information technology – Lightweight cryptography – Part 6: Message authentication codes (MACs), 2019
[14] Kessler, G. & Shepard, S. Maritime Cybersecurity. (2025). A Guide for Leaders and Manag-ers, Second Edition (v2.3, 01/2025).
[15] Kumari, R. & Mustafi, A. (2022). The spatial frequency domain designated watermarking framework uses linear blind source separation for intelligent visual signal processing. Front. Neurorobot. 16:1054481. doi: 10.3389/fnbot.2022.1054481.
[16] Patent Application № a202500460, 06/02/2025, UANIPIO. Sposib avtentyfikatsii peredavan povidomlen sudnovoi avtomatychnoi identyfikatsiinoi systemy, Shyshkin O.V., Konovets V.I.
[17] Recommendation ITU-R M.1371–5 (2014) Technical characteristics for an automatic identi-fication system using time division multiple access in the VHF maritime mobile frequency band.
[18] Sciancalepore, S., Tedeschi, P., Aziz, A., Di Pietro, R. (2022). Auth-AIS: Secure, Flexible, and Backward-Compatible Authentication of Vessels AIS Broadcasts. IEEE Transactions on Dependable and Secure Computing, Vol. 19/ 4, pp 2709 – 2726. DOI: 10.1109/TDSC.2021.3069428
[19] Shyshkin, O. (2022, November). Cybersecurity Providing for Maritime Automatic Identifi-cation System. IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, October 10-14, pp. 736-740. DOI: 10.1109/ELNANO54667.2022.9926987
[20] Westbrook Tegg. (2025). Lethal empowerment and electronic crime: A focus on radio-frequency interference capabilities // Security and Defence Quarterly. – DOI: 10.35467/sdq/196515
[21] Wimpenny, G., Šafář, J., Grant, A., Bransby, M. (2022). Securing the Automatic Identifica-tion System (AIS): Using public key cryptography to prevent spoofing whilst retaining backwards compatibility, NAVIGATION, 75(2).
[22] Wimpenny, G., Lázaro, F., Šafář, J., Raulefs, R. (2025). A pragmatic approach to VDES au-thentication. NAVIGATION, 72(1).
I. Vikulin, S. Mikhailov, O.Nazarenko, L. Vikulina, Electronic sensors-transducers complex for autonomous ships
DOI: 10.31653/2306-5761.37.2025.123-136 | PDF
Abstract
Keywords: ship automation, electronic data transmission, navigation safety, navigation, unmanned vessels, sensor, transducer, diode, transistor, resistor, temperature, magnetic field, radiation, characteristic, sensitivity, radiation.
References
Navigation implementation: The MUNIN perspective/ H. C. Burmeister, W. Bruhn, Ø. J.
Rødseth, T. Porathe // International Journal of e-Navigation and Maritime Economy. — 2014.
— Vol. 1. — pp. 1–13. DOI: 10.1016/j. enavi.
[2] Vikulin I.M. Combined semiconductor injection magnetic field sensors for wireless
information networks. / I.M. Vikulin, L.F. Vikulina, V.E. Gorbachev, S.A. Mikhailov //
Radioelectronics and Communication Systems, 2020, Vol. 63, № 7, pp. 368-375. – Allerton
Press. – N.-Y. – 2020. https://doi.org/10.20535/S0021347020070043.
[3] Park B.; Nah J.; Choi J.; Yoon I. “Robust Wireless Sensor and Actuator Networks for Networked Control Systems”, Sensors (Basel), Vol. 19, No. 7:1535, p. 1–28, 2019. DOI: 10.3390/s19071535.
[4] Chen Z.; Deng F.; Fu Z.; Wu X. “Design of an Ultra-low Power Wireless Temperature Sensor Based on Backscattering Mechanism,” Sensing and Imaging An International Journal, Vol. 19, No. 1, pp. 19–24, 2018. DOI: 10.1007/s11220-018-0207-x.
[5] Luong V. S.; Lu C.C.; Yang J.W.; Jeng J.T. “A novel CMOS transducer for giant magnetoresistance sensors, ” Review of Scientific Instruments, Vol. 88, No. 2:025004, 2017 DOI: 10.1063/1.4976025.
[6] Luong V. S.; Tuan N.A.; Tue N.A. “Exchange Biased Spin Valve-Based Gating Flux Sensor,” Measurement, Vol. 115, p. 173–177, 2018. DOI: 10.1016/j.measurement.2017.10.038.
[7] Li Z.R.; Mi W.B.; Bai H.L. “The contribution of distinct response characteristics of Fe atoms to switching of magnetic anisotropy in Fe4N/MgO heterostructures,” Applied Physics Letters, Vol. 113, No. 13:132401, 2018. DOI: 10.1063/1.5048317.
[8] Jibiki Y.; Goto M.; Tsujikawa M.; et al. “Interface resonance in Fe/Pt/MgO multilayer structure with large voltage controlled magnetic anisotropy change,” Applied Physics Letters, Vol. 114, No. 8:082405, 2019. DOI: 10.1063/1.5082254.
[9] Bichurin M.I.; Petrov V.M.; Petrov R.V.; Tatarenko A.S. “Magnetoelectric Magnetometers,” in: Grosz A., Haji-Sheikh M., Mukhopadhyay S. (eds) High Sensitivity Magnetometers. Smart Sensors, Measurement and Instrumentation, Vol 19. Cham: Springer, 2017. pp 127–166. DOI: https://doi.org/10.1007/978-3-319-34070-8.
[10] Ding J.; Huang L.; Luo G.; et al. “A resonant microcantilever sensor for in-plane multi-axis magnetic field measurements,” Journal of Micromechanics and Microengineering, Vol. 29, No. 6:065010, 2019. DOI: 10.1088/1361-6439/ab18ed.
[11] Ichkitidze L.; Selishchev S.; Telyshev D. “Combined Magnetic Field Sensor with Nanostructured Elements,” Journal of Physics Conference Series, Vol. 1182:012015, p. 1–9, 2019. DOI: 10.1088/1742-6596/1182/1/012015.
[12] Luong V. S.; Tuan N. A.; Tue N. A.; et al. “Application of the flux bending effect in an active flux-guide for low-noise planar vector tmr magnetic sensors,” Vietnam Journal of Science and Technology, Vol. 56, No. 6, p. 714–722, 2018. DOI: 10.15625/2525-2518/56/6/12652.
[13] Zhang Y.; Hao Q.; Xiao G. “Low-Frequency Noise of Magnetic Sensors Based on the Anomalous Hall Effect in Fe-Pt Alloys,” Sensors, Vol. 19, No. 16:3537, p. 1–6, 2019. DOI: 10.3390/s19163537.
[14] Singh R.; Luo Z.; Lu Z.; et al. “Thermal stability of NDR-assisted anomalous Hall effect based magnetic device,” Journal of Applied Physics, Vol. 125, No. 20:203901, 2019. DOI: 10.1063/1.5088916.
[15] Luong V.S.; Tuan N.A.; Hoang Q.K. “Resolution Enhancement in Measuring Low-frequency Magnetic Field of Tunnel Magnetoresistance Sensors with AC-Bias Polarity Technique,” Measurement, Vol. 127, p. 512–517, 2018. DOI: 10.1016/j.measurement.2018.06.027.
[16] Pettinato S., Orsini A., Salvatori S., “Compact current reference circuits with low temperature drift and high compliance voltage,” Sensors, vol. 20, no. 15, p. 4180, 2020, doi: https://doi.org/10.3390/s20154180.
[17] Carvalho R. et al., “A low-power CMOS current reference for piezoelectric energy harvesters,” IEEE Trans. Electron Devices, vol. 67, no. 8, pp. 3403–3410, 2020, doi: https://doi.org/10.1109/TED.2020.2998095.
[18] D. van Treeck et al., “Electroluminescence and current–voltage measurements of single-(In,Ga)N/GaN-nanowire light-emitting diodes in a nanowire ensemble,” Beilstein J. Nanotechnol., vol. 10, pp. 1177–1187, 2019, doi: https://doi.org/10.3762/bjnano.10.117.
[19] Osipov D., Paul S., “Compact extended industrial range CMOS current references,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 66, no. 6, pp. 1998–2006, 2019, doi: https://doi.org/10.1109/TCSI.2019.2892182.
[20] Osipov D., Paul S., “Temperature-compensated beta-multiplier current reference circuit,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 64, no. 10, pp. 1162–1166, 2017, doi: https://doi.org/10.1109/TCSII.2016.2634779.
[21] Wenger Y., Meinerzhagen B., “A stable CMOS current reference based on the ZTC operating point,” in 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), 2017, pp. 273–276, doi: https://doi.org/10.1109/PRIME.2017.7974160.
[22] Cordova D., de Oliveira A.C., Toledo P., Klimach H., Bampi S., Fabris E., “A sub-1 V, nanopower, ZTC based zero-VT temperature-compensated current reference,” in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), 2017, pp. 1–4, doi: https://doi.org/10.1109/ISCAS.2017.8050289.
[23] Kondo K., Tamura H., Tanno K., “High-PSRR, low-voltage CMOS current mode reference circuit using self-regulator with adaptive biasing technique,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E103.A, no. 2, pp. 486–491, 2020, doi: https://doi.org/10.1587/transfun.2019EAP1061.
[24] Wang L., Zhan C., “A 0.7-V 28-nW CMOS subthreshold voltage and current reference in one simple circuit,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 66, no. 9, pp. 3457–3466, 2019, doi: https://doi.org/10.1109/TCSI.2019.2927240.
[25] Ding L., Wang Y., Bao Z., Liao H., Jin X., “A nano-ampere current reference circuit in a 0.5 μm CDMOS technology,” Microelectron. J., vol. 90, pp. 336–341, 2019, doi: https://doi.org/10.1016/j.mejo.2019.02.003.
[26] Chen Y., Tan X., Yu B., Li C., Guo Y., “A new all-in-one bandgap reference and robust zero temperature coefficient (TC) point current reference circuit,” in 2017 IEEE 12th International Conference on ASIC (ASICON), 2017, pp. 541–544, doi: https://doi.org/10.1109/ASICON.2017.8252532.
[27] Siddiqi Y., Ahmed N., Shahbaz M. A., Jawed S. A. “Process and temperature invariant on-chip current reference circuit,” in 2017 First International Conference on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT), 2017, pp. 1–5, doi: https://doi.org/10.1109/INTELLECT.2017.8277643.
[28] Kondo K., Tanno K., Tamura H., Nakatake S., “Low voltage CMOS current mode reference circuit without operational amplifiers,” IEICE Trans. Fundam. Electron. Commun. Comput. Sci., vol. E101.A, no. 5, pp. 748–754, 2018, doi: https://doi.org/10.1587/transfun.E101.A.748.
[29] Huang Z., Zhu X., Li Z., “Design of a high precision current mode band gap reference circuit,” in 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE), 2019, pp. 178–181, doi: https://doi.org/10.1109/EITCE47263.2019.9095076.
[30] Torres R., Roa E., Rueda L. E. G., “On the design of a reliable current reference for systems‐on‐chip,” Int. J. Circuit Theory Appl., vol. 49, no. 7, pp. 2032–2046, 2021, doi: https://doi.org/10.1002/cta.2955.
[31] Hu J., Lu C., Xu H., Wang J., Liang K., Li G., “A novel precision CMOS current reference for IoT systems,” AEU – Int. J. Electron. Commun., vol. 130, p. 153577, 2021, doi: https://doi.org/10.1016/j.aeue.2020.153577.
[32] Torres R., Rueda L. E. G., Cuevas N., Roa E., “On the design of reliable and accurate current references,” in 2020 IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS), 2020, pp. 1–4, doi: https://doi.org/10.1109/LASCAS45839.2020.9069041.
[33] Shinde S. V., “Ultra-low power current reference based on flat band difference of MOSFETs,” J. Phys. Conf. Ser., vol. 1729, p. 012011, 2021, doi: https://doi.org/10.1088/1742-6596/1729/1/012011.