Issue №29

Shipping-and-Navigation-Issue-29-2019

Contents

Ben A., Fedorov A. Formation of cargo plan container ship for multiports transportations

DOI: 10.31653/2306-5761.29.219.10-19 | PDF

Abstract

Purpose. The article deals with the creation of automated systems for managing cargo operations of container ships.Method. The main idea of the scientific research is to study the features of the process of loading-unloading of a container ship during its multi-port going’s (sequential enter to several ports during the same route). This raises the problem of shifting, i.e. the need to move some containers on board a vessel to accommodate others. The proposed method of placing containers on the basis of logical rules of loading and unloading allows to reduce the time of stay of the vessel in port by reducing the number of “shifting” operations, which has a positive effect on the economic performance of a container ship.Scientific novelty. The mathematical model of loading of a container ship on the basis of logical rules is developed that allows to take into account simultaneously the multiportity of execution of trip of the vessel and technological limitations of formation of cargo plan due to the peculiarities of their placement on the ship. The model of formation of the optimal cargo plan of the ship, taking into account the sequence of approach to the ports during the passage, is proposed.Practical importance. In the practical side, this work is aimed at creating a software product, the use of which will allow to solve an important scientific and applied task in the field of application of information technologies in navigation – increase the efficiency and safety of container transportation due to the creation of an automated containerized cargo operations management system (ACCOMS).Results. Key areas of research in this field are identified. It has been shown that ACCOMS will simultaneously solve a complex of cargo operations management tasks, which will reduce the time required to perform them and increase the economic efficiency of a vessel’s passage. Particularly effective is the application of the proposed approach when it is applied to multi-port transportations carried out by container ships with a small number of containers (feeder transportation).Keywords: container cargo plan, logical rules for loading and unloading containers, multiport transportation, automated container cargo operation management system.

References
  1. Vacca, I., Bierlaire, M. & Salani, M. (2007). Optimization at container terminals: status, trends and perspectives. 7-th Swiss Transportation Research Conference, September, 1–21.
  2. Fan, L., Low, M. Y. H., Ying, H. S., Jing, H. W., Min, Z. & Aye, W. C. (2010). Stowage planning of large containership with tradeoff between crane workload balance and ship stability. Proceedings of the International MultiConference of Engineers and Computers Scientists, III, 1–7.
  3. Imai, A., Sasaki, K., Nishimura, E. and Papadimitriou, S. (2006). Multi-objetive simultaneous stowage and loading planning for a container ship with container rehandle in yard stacks. European Journal of Operational Research, 171, 3, 373–389.
  4. Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of Operational Research, 44, 2, 145–159.
  5. Sciomachen, A. & Tanfani, E. (2007). A 3D-BPP approach for optimizing stowage plans and terminal productivity. European Journal of Operational Research, 183, 3, 1433–1446.
  6. Wilson, I. & Roach, P. A. (1999). Principles of combinatorial optimization applied to container-ship stowage planning. Journal of Heuristics, 5, 4, 403–418.
  7. Valente, J. M. S. & Alves, R. A. F. S. (2005). Filtered and recovering beam search algorithm for the early/tardy scheduling problem with no idle time. Computers & Industrial Engineering, 48, 2, 363–375.
  8. Dubrovsky, O., Levitin, G. & Penn, M. (2002). A genetic algorithm with a compact solution encoding for the containership stowage problem. Journal of Heuristics. 8, 6, 585–599.
Borodulin A. V. Сalculation of scopes of region of impermissible values of courses of vessels for domain of elliptic form

DOI: 10.31653/2306-5761.29.219.20-27 | PDF

Abstract

For the choice of maneuver of divergence of vessels the domain of round form is presently used, in the center of which there is a ship, and radius equal of maximum-possible distance of rapprochement. In general case maximum-possible distance of rapprochement is determined tangent to the safe domain which is built in relation to a target. For the domain of round form the size of maximum-possible distance of rapprochement is unchanging, what it is impossible to assert in regard to the domains of other form.

Collected dependence of maximum-possible distance of rapprochement from foreshortening of the drawn together vessels for the safe domain of elliptic form which will allow expecting scopes of region of impermissible values of courses of vessels in the case of his application.

Depending on the side of deviation there are two values of maximum-possible distance of rapprochement: for relative deviation to the right and to the left.

For the calculation of maximum-possible distance of rapprochement it is necessary to find expression of border relative course determining position of tangent to the safe elliptic domain. It is shown that as a border relative course at relative deviation a minimum course from four possible calculation values gets out to the left.

A border relative course at relative deviation to the right gets out a maximal course from four possible calculation values.

Analytical expressions for the calculation of four possible calculation values of relative courses in the case of application of safe domain of elliptic form are got, which scope relative courses at relative deviation to the right and to the left get out from.

The generalized algorithm is resulted and analytical expression is got for the calculation of scopes of region of impermissible values of courses of vessels which divide space of possible and dangerous combinations of courses of the drawn together vessels.

Keywords: safety of navigation, process of divergence of vessels, region of impermissible values of courses, imitation design.

References
  1. Куликов А. М. Оптимальное управление расхождением судов / Куликов А. М., Поддубный В. В. // Судостроение. – 1984. – № 12. – С. 22 – 24.
  2. Кудряшов В. Е. Синтез алгоритмов безопасного управления судном при расхождении с несколькими объектами / Кудряшов В. Е. // Судостроение. – 1978. – №5. – С. 35 – 40.
  3. Lisowski J. Dynamic games methods in navigator decision support system for safety navigation/ Lisowski J. // Advances in Safety and Reliability. – – Vol. 2. – London-Singapore, Balkema Publishers. – Р. 1285 – 1292.
  4. Павлов В.В. Некоторые вопросы алгоритмизации выбора маневра в ситуациях расхождения судов/ Павлов В.В., Сеньшин Н.И. // Кибернетика и вычислительная техника. – 1985. – № 68. – C. 43 – 45.
  5. Вагущенко Л.Л. Расхождение с судами смещением на параллельную линию пути / Вагущенко Л.Л. – Одесса: Фенікс, 2013. – 180 с.
  6. Пятаков Э.Н. Взаимодействие судов при расхождении для предупреждения столкновения /. Пятаков Э.Н, Бужбецкий Р.Ю., Бурмака И.А., Булгаков А.Ю. – Херсон: Гринь Д.С., 2015. – 312 с.
  7. Пятаков Э.Н. Оценка эффективности парных стратегий расходящихся судов / Пятаков Э.Н., Заичко С.И. // Судовождение: Сб. научн. трудов. / ОНМА, – Вып.15. – Одесса: “ИздатИнформ”, 2008. – С. 166 – 171.
  8. Цымбал Н.Н. Гибкие стратегии расхождения судов / Цымбал Н.Н., Бурмака И.А., Тюпиков Е.Е. – Одесса: КП ОГТ, 2007. – 424 с.
  9. Бурмака И.А. Управление судами в ситуации опасного сближения / Бурмака И.А., Пятаков Э.Н., Булгаков А.Ю. – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), – 2016. – 585 с.
  10. Петриченко Е.А. Разработка судовой информационной системы предупреждения столкновений. / Петриченко Е.А., Петриченко О.А.// Судовождение: Сб. научн. трудов ОНМА, – 2018. – Вып. 28. – С. 120-130.
  11. Петриченко О.А. Оперативный способ определения параметров маневра расхождения судна. / Петриченко О.А.// Science and Education a New Dimension. Natural and Technical Sciences, VI(22), Issue: 186, 2018.- С. 68-71.
  12. Бурмака И.А. Определение предельно-допустимой дистанции сближения при эллиптической форме судового домена/ Бурмака И.А. // Austria – science, Issue: 23, 2019.- С. 36 – 43.
Bulgakov A. Yu., Aleksichin A. V. Imitation design of process of divergence of three vessels

DOI: 10.31653/2306-5761.29.219.28-36 | PDF

Abstract

The offered work is devoted to verification of correctness of method of choice of parameters of maneuver of divergence of group of vessels by the change of their courses with the use of procedure of forming of regions of impermissible values of courses of every pair of vessels. The computer program which allows generating the initial situation of dangerous rapprochement of group of vessels was developed for this purpose. Then for the generated dangerous situation the computer program determines the maneuver of divergence of vessels by the change of their courses and his imitation design which produces the animation reflection of process of divergence with the conclusion of current distance between vessels and comparison of her with produced – possible distance of rapprochement.

As an example the situation of dangerous rapprochement of group consisting of three vessels is considered in work, thus for all vessels there is the danger of collision. The indicator of danger applied in the computer program, and which shows that the all ships are dangerously drawn together, testifies to it, for each of which there is situation indignation.

In the program the graphic reflection of regions of dangerous courses of every pair of the drawn together vessels is foreseen and by a scroll bar the input of values of courses of deviation of every pair of vessels is possible.

Because situation indignation exists between all vessels, for his indemnification it is necessary to change courses some ships.

It was set by the preliminary analysis, that more preferable there is the change of course by the second and third ships, because requires less deviation from a programmatic course. If a third ship will deviate to the right, at the conclusion of course from a dangerous region indignation with the first ship appears by a situation, it is therefore necessary to produce the change of course of ship to the left, although it is attended with large deviation from his programmatic value. Does optimum safe divergence of vessels on distance 1,02 miles take place at deviation of the third ship on 62˚ to the left.

The results of imitation design are represented in work, confirmative correctness of the chosen maneuver of divergence, thus the shortest rapprochement on 1,01 miles of the second and first vessels takes place on 568 s the process of divergence.

Keywords: safety of navigation, process of divergence of vessels, region of impermissible values of courses, imitation design.

References
  1. Цымбал Н.Н. Гибкие стратегии расхождения судов / Н.Н. Цымбал, И.А. Бурмака, Е.Е. Тюпиков – Одесса: КП ОГТ, 2007. – 424 с.
  2. Бинай Кумар Синх. Области взаимных обязанностей судов / Бинай Кумар Синх // Судовождение. – 2000. – № 2. – C. 121 – 125.
  3. Заичко С.И. Управление взаимодействием судов в ситуации опасного сближения / С.И. Заичко, Э.Н. Пятаков // Судовождение: Сб. научн. трудов. / ОНМА, – Вып.11. – Одесса: „ИздатИнформ”, 2006. – С. 56 – 60.
  4. Цымбал Н.Н. Учет ограничений МППСС-72 при выборе маневра расхождения судов/ Цымбал Н.Н., Бужбецкий Р.Ю. // Судовождение. – 2006. – № 11. – С. 134 – 138.
  5. Бурмака И.А. Управление судами в ситуации опасного сближения /
    И.А Бурмака., Э.Н Пятаков., А.Ю. Булгаков – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), – 2016. – 585 с.
  6. Мальцев А. С. Учет маневренных характеристик для обеспечения безопасности плавания / А. С. Мальцев // Судостроение и ремонт. – 1989. – №5. – С. 29-31.
  7. Мальцев А. С. Маневрирование судов при расхождении / А. С. Мальцев – Одесса: Морской тренажерный центр, 2002. – 208 с.
  8. Бурмака, И.А. Экстренная стратегия расхождения при чрезмерном сближении судов / И.А. Бурмака, А.И. Бурмака, Р.Ю. Бужбецкий – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), 2014. – 202 с.
  9. Петриченко О.А. Оперативный способ определения параметров маневра расхождения судна. / О.А. Петриченко // Science and Education a New Dimension. Natural and Technical Sciences, VI(22), Issue: 186, 2018.- С. 68-71.
  10. Петриченко Е.А. Разработка судовой информационной системы предупреждения столкновений. / Е.А. Петриченко, О.А. Петриченко // Судовождение: Сб. научн. трудов ОНМА, – 2018. – Вып. 28. – С. 120-130.
  11. Булгаков А.Ю. Маневр расхождения трех судов с изменением их курсов / А.Ю. Булгаков, Б.М. Алексейчук // Проблеми техніки: Науково-виробничий журнал. – 2014. №1. – С. 75 – 81.
Burmaka A. I., Kaliuzhny V. V. Imitation design of process of divergence of vessels by urgent deviation at excessive rapprochement

DOI: 10.31653/2306-5761.29.219.37-46 | PDF

Abstract

For conducting of imitation design of process of urgent divergence the computer program, which contains the module of choice of initial situation of excessive rapprochement, module of analysis of current situation and choice of safe maneuver of urgent divergence, was developed.

The imitation program analyses the situation of excessive rapprochement from positions of target, determines urgent strategy of divergence and manages motion of target.

An user can manage motion of ship by a scroll bar, causing of helm of ship during 20 s, since the moment of including of timer. The imitation program analyses the maneuver of ship and in the case of necessity corrects strategy of urgent divergence. After the stage of output of target on a course equal to the reverse bearing on a ship, the parameters of urgent strategy of divergence are determined.

At the imitation design three variants of conduct of ship were examined: followings with the unchanging parameters of motion, a ship deviates to the right and a ship deviates to the left. Thus beginning of deviation was produced at any point to time on an interval from 0 to 20 s. After 20 s the imitation program the helm of ship was automatically driven to the diametric plane and course of ship became unchanging. This moment of time was perceived by a target, as end of maneuver of ship and on the parameters of situation in the moment of ending of deviation of ship estimation of danger of rapprochement was produced and new parameters of urgent strategy of divergence, which was immediately realized by a target, in the case of necessity settled accounts.

Some variants of initial situations of excessive rapprochement are resulted in the article, in which urgent strategy of divergence of target contains the first stage of deviation only, the parameters of which depend on the conduct of ship. Three situations of rapprochement of vessels with a different conduct of one of them are considered in all.

The resulted examples are shown, that depending on the situation of excessive rapprochement and conduct of ship the first stage can be transformed in relation to a standard variant by the choice of a different trajectory of divergence.

Keywords: Safety of navigation, warning of collision of vessels, excessive rapprochement, urgent divergence.

References
  1. Куликов А. М. Оптимальное управление расхождением судов / Куликов А. М., Поддубный В. В. // Судостроение. – 1984. – № 12. – С. 22 – 24.
  2. Кудряшов В. Е. Синтез алгоритмов безопасного управления судном при расхождении с несколькими объектами / Кудряшов В. Е.  // Судостроение. – 1978. – №5. – С. 35 – 40.
  3. Lisowski J. Dynamic games methods in navigator decision support system for safety navigation/ Lisowski J. // Advances in Safety and Reliability. – – Vol. 2. – London-Singapore, Balkema Publishers. – Р. 1285 – 1292.
  4. Павлов В.В. Некоторые вопросы алгоритмизации выбора маневра в ситуациях расхождения судов/ Павлов В.В., Сеньшин Н.И. // Кибернетика и вычислительная техника. – 1985. – № 68. – C. 43 – 45.
  5. Вагущенко Л.Л. Расхождение с судами смещением на параллельную линию пути / Вагущенко Л.Л. – Одесса: Фенікс, 2013. – 180 с.
  6. Пятаков Э.Н. Взаимодействие судов при расхождении для предупреждения столкновения /. Пятаков Э.Н, Бужбецкий Р.Ю., Бурмака И.А., Булгаков А.Ю. – Херсон: Гринь Д.С., 2015.- 312 с.
  7. Пятаков Э.Н. Оценка эффективности парных стратегий расходящихся судов / Пятаков Э.Н., Заичко С.И. // Судовождение: Сб. научн. трудов. / ОНМА, – Вып.15. – Одесса: “ИздатИнформ”, 2008. – С. 166 – 171.
  8. Цымбал Н.Н. Гибкие стратегии расхождения судов / Цымбал Н.Н., Бурмака И.А., Тюпиков Е.Е. – Одесса: КП ОГТ, 2007. – 424 с.
  9. Бурмака И.А. Управление судами в ситуации опасного сближения / Бурмака И.А., Пятаков Э.Н., Булгаков А.Ю. – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), – 2016. – 585 с.
  10. Петриченко Е.А. Разработка судовой информационной системы предупреждения столкновений./ Петриченко Е.А., Петриченко О.А.// Судовождение: Сб. научн. трудов ОНМА, – 2018. – Вып. 28. – С. 120-130.
  11. Петриченко О.А. Оперативный способ определения параметров маневра расхождения судна. / Петриченко О.А.// Science and Education a New Dimension. Natural and Technical Sciences, VI(22), Issue: 186, 2018.- С. 68-71.
  12. Бурмака И.А. Экстренная стратегия расхождения при чрезмерном сближении судов / Бурмака И.А., Бурмака А. И., Бужбецкий Р.Ю. –LAP LAMBERT Academic Publishing, 2014. – 202 с.
Vagushchenko L. L., Vagushchenko A. L., Vdovichenko A. I. Selection of the collision avoidance maneuver by the areas of points of its allowable initiatives

DOI: 10.31653/2306-5761.29.219.47-54 | PDF

Abstract

A method, that in the dialogue mode with the collision avoidance system simplifies the determination of Z-maneuver for safe passing by the ships, is proposed in the article. The maneuver is selected by using the zones of its allowable initiations that are displayed in this system on the screen periphery. It ensures the absence of these zones in the bow sector, distinguished for control of safety of situation ahead of own ship, and it eliminates shading and masking of navigation-important objects by these zones. When considering the task, it is assumed that course changes are performed with a rudder angle of 150, that the turning ability of the own vessel to the right and left is the same and the turning path is an arc of a circle with a radius that correspond to the rudder angle. When calculating the Z-maneuver, the curvilinear sections of the trajectory are replaced by time-equivalent straight segments of uniform motion.

The diagram, that facilitates the maneuver selection, represents a set of safe beginnings of this action in relation to all targets, taken into account when solving the collision avoidance problem. The values of the course changes are plotted along horizontal axis of this diagram, and the distances to the boundary of own ship advance actions in relation to the most dangerous target are put aside its vertical axis. The main part of the proposed method is the procedure for finding the intervals of acceptable initiations of course alteration for avoiding collision with one ship and segments of safe returning to the previous course for Z-maneuver with a given value of the angle of deviation from the original course. In order to obtain more complete information about the set of permissible maneuver variants it is possible to display the indexes of theirs effectiveness at the top of a diagram. The reliability of obtained results was confirmed by simulation modeling of the collision avoidance processes on a computer. For this purpose a special program was drawn up. One example of such examination is given in the article.

The advantage of the proposed method to avoid collision is the possibility of simultaneous selection of the beginning and magnitude of the course change, the point of safe return to the initial course in the evasion segment, and the absence of graphical elements, that facilitate the choice of maneuver, on the system screen in a zone for navigation safety control.

Keywords: collision avoidance, Z-maneuver, area of allowable maneuver initiation.

References
  1. Булгаков А.Ю. Использование опасной области курсов двух судов для выбора допустимого маневра расхождения / А.Ю. Булгаков //Водный транспорт. – 2014. №2 (20). – С. 12-17.
  2. Волков А.Н. Применение судовой безопасной области для учета опасной цели и навигационного препятствия / А.Н. Волков //Водный транспорт. – 2014. №2 (20). – С. 29-35.
  3. Волков Е.Л. Оперативный способ предупреждения столкновений судов с помощью области недопустимых параметров движения / Е.Л. Волков //Автоматизация судовых технических средств. – 2017. – №23. – С. 21-24.
  4. Вагущенко Л. Л. Расхождение с судами смещением на параллельную линию пути /Л. Л. Вагущенко – Одесса: Фенікс, 2013. – 150 c.
  5. Мальцев А.С. Маневрирование судов при расхождении /А. С. Мальцев, Е.Е.Тюпиков, И.И.Ворохобин. – 3-е изд., перераб. и доп. – Одесса: Морской тренажерный центр, 2013. – 304 с.
  6. Pietrzykowski Z. NAVDEC – navigational decision support system on a sea-going vessel /Z. Pietrzykowski, P. Borkowski, P. Wołejsza // Maritime niversity of Szczecin, Scientific Journals. – – 30(102). – P. 102–108.
Vagushchenko L. L., Kozachenko J. N., Vdovichenko О. A. Determination of an evasive combined z-maneuver with a known beginning

DOI: 10.31653/2306-5761.29.219.55-65 | PDF

Abstract

The method of determining of the combined Z-maneuver with a known start to avoid collisions with several ships is covered in the article. Three classes and 11 types of approaching of own vessel with a dangerous target are used when choosing maneuvers. These types are determined by the relative bearing and the aspect angle of the target. The domains of danger are formed at the targets when assessing the situation threat and maneuver searching. These domains have the shape of a circle. The center of domain is shifted of the target mass centre to bow on one third part of the domain radius. A two-dimensional spatial criterion is used to identify dangerous targets. Three phases (advance measures, permissible actions after the first phase, urgent actions for both vessels) are highlighted in the process of approaching of own ship with the dangerous target.

The requirements of the COLREG are taken into account by increasing the domain radius of the most dangerous target for maneuver variants, which according to these rules should be avoided. The dynamics of the own vessel in the forecasts of course or speed alterations are taken into account by using approximate formulas. These formulas are used for prediction of the “weak” and “average” joint course and speed changes also, on the assumption of their independence. In complex situations the course and speed maneuvers are determined on the diagram of safe velocity vectors. A method for calculating diagram taken into account the dynamics of own ship, as well as variants of this diagram used to choose evasive actions, are proposed in paper. It is possible for a given value of a speed/course change to define realms of zones of safe course/speed values and deviation of the route before returning to the previous elements of the movement.

The proposed method allows to simplify the selection of an effective variant of the combined Z-maneuver with obtaining information about the distance of deviation from the route in difficult situations. It is important in confined water areas. This method provides the ability to display a realm of zones of permissible maneuver variants and can be used in ECDIS in solving the tasks of ships collision prevention. The reliability of the method was tested on examples of collision avoidance in various situations.

Keywords: collision avoidance, combined Z-maneuver, realm of zones of permissible maneuver variants.

References
  1. Вагущенко Л.Л. Упрощение выбора двух шаговых маневров расхождения с судами /Л.Л. Вагущенко, А.Л. Вагущенко – LAP LAMBERT Academic Publishing, 2018. – 82 с.
  2. Демин С.И. Управление судном: учебник (для вузов) / С.И. Демин,
    Е.И. Жуков, Н.А. Кубачев и др.; под ред. В.И. Снопкова. – М.: Транспорт. 1991. – 359 с.
  3. Мальцев А.С. Маневрирование судов при расхождении /А. С. Мальцев, Е.Е. Тюпиков, И.И. Ворохобин [3-е изд., перераб. и доп.]. – Одесса: Морской тренажерный центр, 2013. – 304 с.
  4. Цымбал Н.Н. Гибкие стратегии расхождения судов / Н.Н. Цымбал,
    И.А. Бурмака, Е.Е. Тюпиков – Одесса: КП ОГТ, 2007. – 424 с.
  5. Degre T. A collision avoidance system / T. Degre, X. Lefevre //The Journal of Navigation. – – 34. – P. 294-302.
  6. Pedersen E. Simulator studies on a collision avoidance display that facilitates efficient and precise assessment of evasive manoeuvres in congested waterways / E. Pedersen, K. Inoue, M. Tsugane //The Journal of Navigation. – – 56. – P. 411 – 427.
Volkov A. N., Khussein Yu. M. Properties of virtual safe regions

DOI: 10.31653/2306-5761.29.219.66-75 | PDF

Abstract

In the straitened waters in case origin of situation of dangerous rapprochement of courts at the choice of maneuver of divergence surrounding ships and navigation dangers must be taken into account also, that presently possible by an analytical way and is arrived at by bulky and ineffective methods. Therefore, the necessity of development of operative and evident methods of warning of collisions of vessels at sailing in the straitened waters based on application of modern computer technologies is an actual and perspective subject.

In the article is specified, that the sign of dangerous rapprochement of ship with a target behaves to basic properties of virtual region, in obedience to which distance of the shortest rapprochement of ship with the target of less set maximum – possible distance of rapprochement, there is the hit of current area of programmatic trajectory of motion of ship in the virtual region of target. It is also marked that distance of the shortest rapprochement of ship with a dangerous target will be equal to the set maximum-possible distance of rapprochement, if direction of current area of programmatic trajectory of motion of ship is tangent to the border of virtual region.

It is shown in the article, that to the factors influencing on sizes and orientation of virtual regions, belong, bearing and distance between a ship and target, relation of speeds of ship and target, and also time domain from the initial situation of rapprochement at the following of vessels unchanging by the parameters of motion.

In instance where attitude of speed of ship toward speed of target diminishes other things being equal a virtual region changes the form and position, here safe rapprochement can be transformed in dangerous.

There is the increase of sector of dangerous relative directions at diminishment of initial distance, that in general case conduces to diminishment of great number of safe courses of ship. It is shown that the change of orientation, form and sizes of virtual region takes place at the change of bearing on a target in the case of unchanging distance and the other parameters of situation of rapprochement. The sizes of virtual region depend on the course angle of ship from a target, thus with growth of course corner is multiplied a virtual region. Thus the sizes of virtual region do not depend on that, whether there is the course angle of side right or port.

Keywords: safety of navigation, preventing of collision of vessels, virtual region, features of reflection of virtual region.

Refernces
  1. Павлов В.В. Некоторые вопросы алгоритмизации выбора маневра в ситуациях расхождения судов/ В.В. Павлов, Н.И. Сеньшин // Кибернетика и вычислительная техника. – 1985. – № 68. – C. 43-45.
  2. Куликов А. М. Оптимальное управление расхождением судов / А.М. Куликов, В. В. Поддубный // Судостроение. – 1984. – № 12. – С. 22-24.
  3. Пятаков Э.Н. Взаимодействие судов при расхождении для предупреждения столкновения / Э.Н. Пятаков, Р.Ю. Бужбецкий, И.А. Бурмака, А.Ю. Булгаков– Херсон: Гринь Д.С., 2015. – 312 с.
  4. Цымбал Н.Н. Гибкие стратегии расхождения судов / Н.Н. Цымбал, И.А. Бурмака, Е.Е. Тюпиков. – Одесса: КП ОГТ, 2007. – 424 с.
  5. Бурмака И.А. Управление судами в ситуации опасного сближения / И.А Бурмака., Э.Н Пятаков., А.Ю. Булгаков – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), – 2016. – 585 с.
  6. Statheros Thomas. Autonomous ship collision avoidance navigation concepts, technologies and techniques / Statheros Thomas, Howells Gareth, McDonald-Maier Klaus. // J. Navig. 61, № 1, p. 129-142.
  7. Сафин И.В. Выбор оптимального маневра расхождения / И.В. Сафин // Автоматизация судовых технических средств. – №7. – 2002. – С. 115-120.
  8. Бурмака И.А. Экстренная стратегия расхождения при чрезмерном сближении судов / Бурмака И.А., Бурмака А. И., Бужбецкий Р.Ю. – LAP LAMBERT Academic Publishing, 2014. – 202 с.
  9. Петриченко Е.А. Вывод условия существования множества допустимых маневров расхождения с учетом навигационных опасностей / Петриченко Е.А. // Судовождение. – 2003. – №.6. – С. 103 – 107.
  10. Бурмака И.А. Результаты имитационного моделирования процесса расхождения судов с учетом их динамики / Бурмака И.А. // Судовождение. – 2005. – №10. – С. 21 – 25.
  11. Волков А.Н. Отображение зоны безопасности судна на электронной карте/ Волков А.Н. // Судовождение: Сб. научн. трудов./ ОНМА, Вып. 23. – Одесса: «ИздатИнформ», 2013. – С. 40 – 45.
  12. Волков А.Н. Применение судовой безопасной области для учета опасной цели и навигационного препятствия / Волков А.Н.// Водный транспорт. – 2014, № 2 (20).– С. 29 – 35.
Golikov A. A., Oleynik J. A. Vessel’s navigation safety management in shallow waters at the port area

DOI: 10.31653/2306-5761.29.219.76-81 | PDF

Abstract

It often happens that ports serve larger vessels than for which they were developed. The main limitation is the depth and width of port waters. Draft determines the safety of traffic. In Ukrainian ports, the maximum clearance is set in accordance with the legislation on ports, however, you can change the maximum draft of the vessel coming from the current and forecast conditions regarding the water level.

The process of safe navigational motion is called maritime safety. It can be qualified as a set of technical, functional, and operational conditions, as well as a number of recommendations, rules, and procedures. It can minimize the likelihood of undesirable events that can result in damage or loss to a ship, cargo, port facilities, or environmental pollution. These factors are the result of vessel’s functioning and the specific “man-ship-environment” system. This means that under certain conditions a suitable trajectory of a ship cannot be planned. So, it is not always possible to steer a ship along the correct planned trajectory. Environment is an important component of this system, in this situation to understand as the water area in which the vessel is moving. A quantitative assessment of shipping safety requires the use of appropriate, suitable criteria, measurements, and norms that make this possible. The criteria serve as the basis for the assessment, which can allow qualifying accidents. It ensures that security levels are managed. Applying the results of a navigation safety assessment is called security management. This can be used to design and modernize waterways and determine the conditions for their use. It can allow building and modernization of waterways elements (fairway, approach channel, entrances to the port and port basin, berth, anchorage zone, and turn area), which is the best way from an economic point of view, while supporting an appropriate level of vessel’s safety.

This article presents an assessment of navigational risk in case of damage to the hull of the vessel from contact with the ground. The results of this study can be used to improve ship traffic safety in order to optimize port operations.

Keywords: navigation, ship safety, port water area, maneuvering.

References
  1. Ганнесен В.В. Плавание на мелководье и в узкости учебное пособие для судоводителей [Электронный режим] – Режим доступа: http://pilotservice.narod.ru/masters/SHALW/SHALW.htm – загол. с экрана.
  2. Смирнов В.П. Экспериментальные исследования некоторых вопросов безопасности мореплавания морских судов на мелководье: автореф. дис. канд. техн. наук: 05.22.15. – Л., 1978. – 26 с.
  3. Сухомел Г.И. Исследование движения судов по ограниченным фарватерам: монография. – Киев: Изд-во АН УССР, 1956. – 164 с.
  4. Воробьев Ю. Л. Расчет вероятности касания корпусом дна при плавании судна по мелководному фарватеру // ОНМУ Вісник Одеського національного морського університету. – 2010. – Вип. 30. – С. 26-35.
  5. Воробьев Ю.Л. Экспресс-оценка минимального запаса глубины под килем судна, идущего в мелководном фарватере // ОНМУ Вісник Одеського національного морського університету. – 2010. – Вип. 29. – 2010. – С. 26-38.
  6. Голіков А.О., Мусаєв М.А., Олійник Ю.А., Сучасні проблеми Морського порту Маріуполь, Випуск № 28 – 2018 р.
  7. Голіков А.О., Олійник Ю.О., Оцінка ризиків та рівня безпеки при зіткненні судна з мостом, стр 170-172 Сучасні інформаційні та іноваційні технології на транспорті (MINTT – 2019)
  8. Ковалев А.П. К вопросу о проседании судна на мелководье и в канале // Морской транспорт. Сер. Безопасность мореплавания. 1984. Вып.5 (165). с. 19-22.
  9. Паданев Ф.И., Шувалов В.П. Обеспечение безопасности проводки судов с предельными осадками // Морской транспорт. Сер. Безопасность мореплавания. 1983. Вып.6 (156). с. 11-18.
Zinchenko S. G. Estimation of efficiency of work of transport and technological systems of sea ports under conditions of drainage of loads

DOI: 10.31653/2306-5761.29.219.82-96 | PDF

Abstract

The article analyzes the existing approaches to the strategic development of Ukraine’s maritime transport, including the infrastructure of seaports under conditions of deregulation of their work.

The formation of the necessary conditions for a balanced, rational development and deployment of the transport infrastructure, the elimination of the existing imbalances between it and other sectors of the economy require the development of its strategy for the medium and long-term time horizons. The implementation of the development strategy and location of the transport infrastructure in order to solve the problem of complete, timely, uninterrupted and high-quality satisfaction of the rapidly growing demand of consumers of services with possible minimum costs will require its priority, advanced and accelerated formation in relation to the economy as a whole and its individual sectors.

Ports are the most important points of transshipment of cargo to sea transport from adjacent regions and the country as a whole. The peculiarity of the work of the transport and technological complex of the seaport in modern technical, economic and political conditions is that it works mainly in view of the increased deregulation according to the nomenclature and the number of transported goods.

The peculiarities of the work of seaports of Ukraine in the conditions of deregulation are studied using the example of the Mariupol port of the Eastern region of Ukraine for transportation of various types of cargo. A graphic model demonstrating the changes in the main port performance parameters was constructed depending on the influence of various conditions and factors.

The complexity of the work of seaports lies in a certain “unpredictability” of the nomenclature and volume of logistic flows of goods and the requirements of consumers, not fully dependent on the specialization and areas of work of the ports.

In the study of this problem, the zones of deregulation of the volumes of cargo flows passing through the seaports of Ukraine were determined, the influence of deregulating factors on their competitiveness was described.

The analysis showed that changes in the nomenclature and volumes of cargo traffic have a significant deregulation effect on the operation of the transport infrastructure of the seaport, and with a significant level of cargo traffic it is necessary to take into account, including the seasonal factor.

When assessing deregulation changes in seaport traffic, measures to change the load on its transport infrastructure should be developed in accordance with a specific area of border change, i.e. infrastructure spending increases or decreases accordingly. This will allow you to choose a rational direction to increase the efficiency of the entire transport and technological system of the port, improve the state of the port infrastructure and increase the competitiveness of the Eastern region of Ukraine.

The method of mathematical analysis determines the limits of deregulation of the transport and technological complex on the example of the Mariupol sea port, depending on different performance indicators, directions and range of cargo traffic according to long-term, more than 12 years, observations.

The area of change in the limits of the deregulation of cargo flows has been determined, which makes it possible to adjust infrastructure costs accordingly and increase the competitiveness of the seaport.

Keywords: seaport, transport and technological system, deregulation, cargo, factor, field of tolerance.

References
  1. Бобрик П.П. Проблемы и задачи центральноазиатского транзита // Государственное управление. Электронный вестник. Вып. № 62. Июнь 2017 г. http://e-journal.spa.msu.ru/uploads/vestnik/2017/vipusk__62._ijun /problemi_upravlenija_teorija_i_praktika/bobrik.pdf
  2. Сайт студенческой книги // Проблемы управления транспортной инфраструктурой. Пути их решения [Электронный ресурс]. – Режим доступа: https://studbooks.net/2437178/tehnika/problemy_upravleniya_ transportnoy_infrastrukturoy_puti_resheniya.
  3. Зинченко С. Г. Контроллинг эксплуатации и ремонта объектов транспортно-технологической системы морского порта в условиях дерегуляции перевозки грузов и наличия суброгацийного оборудования / С. Г. Зинченко. – Мариуполь: ООО «ППНС», 2017. – 159 с.
  4. Офіційний сайт Державного підприємства «Адміністрація морських портів України» [Електронний ресурс]. – Режим доступу: http://uspa.gov.ua/ru/pokazateli-raboty.
  5. Ницевич А. Стране нужна стратегия приватизации портов / А. Ницевич, Н. Мельников // Порты Украины. – 2016. – № 5. – С. 36-37.
  6. Берестовой А. М. Проблемы эксплуатации и ремонта объектов транспортно-технологической системы морского порта в условиях его развития / А. М. Берестовой, С. Г. Зинченко, Л. Ф. Хлопецкая // Судовождение: Сб. науч. трудов. Вып. 26. – Одесса, 2016. – С. 175-182.
  7. Ільницький Д. О. Пошук ідеальної моделі транспортно-технологічної системи порту: компетентнісний вимір / Д. О. Ільницький, С. Г. Зінченко // Вісник Одеського національного університету. Серія Економіка. – Одеса, 2017. – Т. 22. – Вип. 5 (58). – С. 87-97.
  8. Васьков Ю. Ю. Концессия является понятной для всех. – 20 сентября 2012 / Ю. Ю. Васьков // ЦФТС [Електронний ресурс]. – Режим доступу: http://cfts.org.ua/opinions/47670.
  9. Офіційний сайт Міністерства інфраструктури України [Електронний ресурс]. – Режим доступу: http://mtgov.ua/.
  10. Рихтер К. Ю. Транспортная эконометрия: пер. с нем. / К. Ю. Рихтер. – М.: Транспорт, 1982. – 317 с.
  11. Зинченко С. Г. Транспортная система морского региона Восточной Украины / С. Г. Зинченко // Сєверодонецьк: Вісник Східноукраїнського національного університету імені Володимира Даля, – № 5 (235), 2017. – С. 46-49.
  12. Казанская Л. Ф. Повышение эффективности грузовых перевозок на фоне роста конкуренции / Сборник Петербургского государственного университета путей сообщения Социально-экономические проблемы // Л. Ф. Казанская, А. В. Богомолова – СПб. – 2012. – № 4. – С. 157-165.
  13. Kwan S. The Korean miracle (1962-1980) revisited: myths and realities in strategy and development / S. Kwan, Kim // Kellogg Institute at the University of Notre Dame: Working Paper. 1991. – № 166. – Р
  14. На четвертому році спорудження окупантами Керченського мосту Омелян заявив, що будівництво має бути «терміново зупинене», [Електронний ресурс] / Режим доступу: http://www.maritimebusinessnews. com.ua/news/news/2017/11/29/30803.html.
  15. Мировой портовый оператор зашел в Украину [Электронный ресурс] / Режим доступу: https://korrespondent.net/business/companies/ 3925425-myrovoi-portovyi-operator-zashel-v-ukraynu.
  16. Закон «Про морські порти України» від 17.05.2012 р. № 4709-VI. [Электронный ресурс] / Режим доступу: http://zakon2.rada.gov.ua/laws/show/ 4709-17.
  17. Как развивать порт: 10 ответов порта Клайпеда [Электронный ресурс] / ЦФТС.Режим доступу: http://cfts.org.ua/spetsproekty/ kak_razvivat_port_10_otvetov_porta_klaypeda
  18. Информационный сайт г Керчь. [Электронный ресурс] // Раздел «Новости». / В Керченском проливе сел на мель «Зеленый крокодил», 16.02.2017. – Режим доступу: http://kerchinfo.com/v-kerchenskom-prolive-sel-na-mel-zelenyj-krokodil.html
  19. Берестовой А. М., Перепечаев С. Н., Черныш А. А. Повышение уровня безопасности мореплавания суброгацийных морских судов. Материалы международной научно-технической конференции. – Мариуполь: АМИ ОНМА, 2014, С. 67-69.
  20. Кудрина Л. Вадим Бойченко о средней зарплате в Мариуполе и других актуальных вопросах / Л. Кудрина // Приазовский рабочий. – 2016. – № 104. – С. 3.
Kondratieva L. Y. Mathematical model of the motion of Coast Guard SWATH type

DOI: 10.31653/2306-5761.29.219.97-105 | PDF

Abstract

A lot of modern software are used the following methods for the seakeeping of ships calculations: the panel method and the flat sections method. Such calculations are playing an important role for the normal functioning of the designed vessel. For vessels with an atypical contours, panel method is using rather because it shows quite accurate results, but this calculation is carried out for a ship without a speed. But, for the ship motion calculation with speed is more often used Lewis approximation, but in case of small waterline area vessels do not give accurate results, this problem leads to high errors in the final calculation. Compared with other software systems SW52 allows to calculate the frequency-amplitude characteristics at any speed without losing the quality of calculations like in cases of using Lewis approximation. The results of the amplitude-frequency characteristics calculations using the Maccanyo-Landweber approximation in comparison with the results of experimental investigations of the seakeeping of the SWATH vessel “NAVATEK-1” for rolling, pitching and heaving has been performed in the article.

However, to apply this complex optimization problem, it is necessary to present it as a standalone block, which is called during the search for the optimum of the goal function. Thus, “SW52” makes calculations based on the spectral theory of motion and allows to calculate the standard deviations of the SWATH vessel’s oscillations within the framework of the correlation theory. That is, the results are formed and agreed to the modern requirements for the seakeeping of patrol vessels according to such parameters as significant rolling, pitching, slamming, and also horizontal and vertical accelerations. The optimization task, which includes calculations of the seakeeping of vessel not only on the calm water, but also on irregular waves, will significantly improve the quality of the results of engineering work at the conceptual design stage for the SWATH vessel.

References
  1. Бойко А.П. Метод формирования поверхности судна с малой площадью ватерлинии [Текст] А.П. Бойко, А.В. Бондаренко// Збірник наукових праць НУК.- Миколаїв: НУК, 2010.- № 3.-С.62-68.
  2. Дам С. Т. Выбор основных проектных характеристик кораблей береговой охраны: дис. к-та техн. наук: 05.02/ Дам Суан Туан; Украинский государственный морской технический університет шимени адмірала Макарова– Д., 2003 – Бібліогр.: C. 7–96.
  3. Дубровский В.А. Приближённый метод определения главных элементов судов с малой площадью ватерлинии [Текст] / В.А. Дубровский // В книге  “Многокорпусные суда”. – Л.: Судостроение,  -С. 289-294.
  4. Некрасов В. О. Метод визначення голловних розмірів та характеристик кораблів берегової охорони [Текст]// VIII Міжнародна науково-технічна конференція «Іновації у суднобудуванні і техніці» (Миколаїв НУК) 2017 11-12 жовтня С.11-16.
  5. Кондратьєва Л.Ю. Розрахунок критеріїв морехідності в задачі оптимізації патрульних суден [Текст]// Сучасні інформаційні та інноваційні технології в транспорті» MINTT (Херсон ХДМА) 2016 19-20 травня с.117-121.
  6. Ремез Ю.В. Качка корабля [Текст]/ Ю.В. Ремез. Л : Судостроение 1983, С.48-49.
  7. Семенова В. Ю. Разработка метода расчета нелинейной качки судов: Дис. д-ра техн. наук: 05.08.01 СПб., 2005 360 с. РГБ ОД, 71:06-5/458.
  8. Шапошников В.М. Метод расчёта волновых нагрузок, действующих на двухкорпусные суда с малой площадью ватерлинии (СМПВ) [Текст] / В.М. Шапошников // Сборник НТО им. акад. А.Н. Крылова. – Л.: Судостроение, 1989. – Вып. 465.-С.58-71.
  9. Bentley Maxsurf Motion, Help
  10. Seldl L. H., Clifford W. F., Cummungs G. P., Design and operational Experience of the Swath ship NAVATEK-1/ Marine technology .- Vol. 30, № 3.-1993 pp/ 153-171.

11. D. T. Higdon, Multi-Hull Motions Simulation /Text/4 July Philadelphia, 2000 . Режим доступу–http://home.earthlink.net/~dynamicstech/downloads/multi-overview.html

    Korban D., Burmaka I. Finite-dimensional distributions at radio-location supervision of navigation objects

    DOI: 10.31653/2306-5761.29.219.106-115 | PDF

    Abstract

    The uncertainty arising when using the characteristics of a system of radar signals reflected from marine objects in the presence or absence of atmospheric formations, which interfere with the radar allocation of echo signals of navigation objects on the ship’s radar indicators of, is considered. In this case, it becomes necessary to isolate completely defined signal structures and structures with uncertainty, which include fluctuating signals that have random deviations from their average equilibrium states. A mechanism is distinguished in structures with uncertainty, which is an internal property of a ship’s radar system that is not associated with the action of any random forces, i.e. chaos. Chaos introduces a certain risk when the operator makes a final decision that the echo signal on the indicator of the ship’s radar is created only by the navigation object and the measured coordinates belong only to the navigation object.

    To reduce the risk from uncertainty in the homing of the echo signal with the navigation object located in the atmospheric area of education for non-stationary echo (partially polarized echo signal) uncertainty is set to the actual Stokes parameters in combination with their conversion according to deterministic rules. A mathematical model of the random process represented by job family, of course dimensional distributions using the mathematical expectations of the Stokes parameters and coherence matrix. In the marine radar the time interval of averaging is finite, therefore, as applied to polarimetric radar the tasks used, the Stokes vector, represented by a matrix with blocks describing statistical relations between components of a random process at fixed time points and are interpreted as the energy characteristics of the original random process. It is shown that the amount of information in the polarization echo signals with uncertainty in their temporal and polarization structures does not depend on the decomposition and determines the correlation function and the statistics of the time error samples of the system echoes. It is established that due to the process of radar surveillance with navigation facilities preventing reflections from atmospheric formations, the uncertainty of the effect on polarization parameters of the echo signal and the temporary provisions of the system echoes. It is shown that the model of echo signal together reflected from the navigation object and atmospheric education is the period of a random function defined by the time interval the sum of a finite number of elements of the decomposition. The probabilistic characteristics of a stationary random process and random errors are determined by multidimensional normal distribution laws, centered on their average values.  The amount of radar information in the polarization echo signal with uncertainty in the temporal and polarization structures is determined by the dispersion of orthogonally polarized components, the form of the correlation function defined by the Stokes polarization parameters and the statistics of the time errors of the readings of the radar signal system.  When analyzing radar information on the indicators of the ship’s radar about the polarization system of the echo signals of a navigation object located in the zone of atmospheric formation, a classification system of procedures is used, according to which a decision is made on the principle of “certainty – risk – uncertainty”.

    Keywords: radar system, polarization parameters of echo signals, navigation object, atmospheric formation, uncertainty, decision making.

    References
    1. Потехин В. А. Программно-целевые методы создания бортовых радиолокационных систем. [В кн. Поляризация сигналов в сложных транспортных радиоэлектронных комплексах; под ред. А. И. Козлова, В. А. Сарычева] / В.А. Потехин, В.А. Сарычев. – СПб.: Хронограф, 1994. – С. 57-97.
    2. Авишев В. Б. Моделирование полей сложной поляризационной структуры. [В кн. Поляризация сигналов в сложных транспортных радиоэлектронных комплексах; под ред. А. И. Козлова, В.А. Сарычева] / В.Б. Авишев, Ю.И. Палагин, В.А. Сарычев. – СПб.: Хронограф, 1994. – С. 312-341.
    3. Авишев В. Б. Анализ неопределенности при исследовании поляризационного состояния сигналов транспортных радиоэлектронных комплексов. [В кн. Поляризация сигналов в сложных транспортных радиоэлектронных комплексах; под ред. А. И. Козлова, В. А. Сарычева] / Б. В. Авишев, О.М. Исаева, В.А. Сарычев, А.А. Семенов. –СПб.: Хронограф, 1994. – С.418-454.
    Koshevyy V., Kovalev M., Shyshkin O. Interface standardization of the integrated radio communication system

    DOI: 10.31653/2306-5761.29.219.116-125 | PDF

    Abstract

    Maritime terrestrial communication employs Digital Selective Calling (DSC) to establish subsequent radiotelephone / telex messaging. DSC is a core subsystem of the Global Maritime Distress and Safety System (GMDSS) but its practical operation has revealed shortcomings, which have led to the fact that DSC procedures are practically not used in address radio communications. DSC imperfections appear especially in theemergency situations and may adversely affect the safety of navigation. An unfriendly interface causes the navigators to ignore DSC procedures and provokes the voice call on distress and safety channel 16 that doesn’t accelerate the information exchange, but only creates communication uncertainty.

    The article proposes an approach to improve the user DSC interface based on the integration of DSC controllers and Automatic Identification System (AIS) transponder installations and standardization of the DSC interface that implies unified presentation of information and control operations for VHF/MF/HF communications regardless of the equipment from different manufacturers.

    Taking into account the practical needs of navigators an experimental integrated VHF DSC-AIS system with the remote control in the NMEA-0183 standard and graphical user interface were developed. In the integrated DSC – AIS system there is no need to manually entering the maritime mobile service identity (MMSI) of the called vessel. To establish a connection with the vessel required, the officer must: 1) select the AIS mark of the vessel to be called on the information display to automatically entering the MMSI into the DSC controller; 2) receive a DSC acknowledgement from the called vessel by a blinking AIS mark, and 3) start an exchange of information without wasting time identifying who is who. The working channel (frequency) can be set by default (or can be selected manually, if necessary, using the standard user menu).

    The standardized interface provides the unification of the transceivers’ handling in the integrated radio communication system, regardless to the specifics of the radio communication equipment of different manufacturers and increases the efficiency of radio communication.

    Keywords: graphical User Interface, Automatic Identification System, Digital Selective Calling, Very High Frequency, microcontroller, NMEA-0183

    References
    1. Вагущенко Л.Л. Современные информационные технологии в судовождении: Электронное учебное пособие/ Одесса ОНМА, 2013. – 135 с.
    2. Simplification of DSC equipment and procedures. Submitted by Finland / Sub-Committee on Radiocommunications and Search and Rescue 8/4/1, 27 November 2003.
    3. Miyusov M.V., Koshevoy V.M., Shishkin A.V. “Increasing Maritime Safety: Integration of the Digital Selective Calling VHF Marine Radiocommunication System and ECDIS, TransNav – International Journal on Marine Navigation and Safety of Sea Transportation, 2011, Vol. 5, No. 2, pp. 159 – 161.
    4. Koshevoy V.M., Shishkin A.V. Enhancement of VHF Radiotelephony in the Frame of Integrated VHF/DSC – ECDIS/AIS System / Marine Navigation and Safety of Sea Transportation. Navigational Problems. Editor A.Weintrit. CRC Press/Balkena, 2013.
    5. Кошевой В.М., Шишкин А.В.Модернизация ЭКНИС для взаимодействия с системой УКВ радиосвязи / В. М. Кошевой, А. В. Шишкин // Судовождение. – 2014. – Вып. 24. – С. 92-100.
    6. Koshevyy V., Shyshkin O. Standardization of Interface for VHF, MF/HF Communication Using DSC within Its Integration with INS in the Framework of e-Navigation Concept / Marine Navigation and Safety of Sea Transportation. Navigational Problems. Editor A. CRC Press/Balkena, 2019.
    7. Patraiko D. What is S-Mode and why does it matter? The Navigator. 2017, February. pp. 4 – 5.
    8. Patraiko D., Wake P., Weintrit A. E-Navigation and the Human Element. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation. Vol. 4, No. 1. pp. 11 – 16.
    9. Weintrit A. Guidelines on the Display of Navigation-Related Information Received by Communication Equipment at Sea. Archives of Transport System Telematics. 2018, vol. 11, No 3, pp. 57 – 62.
    10. Recommendation ITU-R M.493-15 (01/2019). Digital selective-calling system for use in the maritime mobile service.
    11. Rodseth O.J., Christensen M.J., Lee K. Design challenges and decisions for a new ship data network, ISIS 2011. 23 p. URL: http://www.mits-forum.org/resources/lwe-paper-isis-v9.pdf.
    12. International standard IEC IEC 61097-3. 2017. Global Maritime Distress and Safety System (GMDSS) – Part 3: Digital selective calling (DSC) equipment – Operational and performance requirements, methods of testing and required testing results.
    Kulakov М. A., Korh М. V. Graphic reflection of regions of impermissible values of parameters and their application

    DOI: 10.31653/2306-5761.29.219.126-133 | PDF

    Abstract

    It is indicated in work, that the decline of accident rate of vessels at sailing in the straitened waters is one of major problems of increase of safety of navigation. It is shown that the straitened districts of sailing with especially intensive motion presently by the stations of traffic control of vessels which along with the control of process of navigation are intended for the management by motion of the dangerously drawn together vessels. Therefore, development of methods of management by the dangerously drawn together vessels is actual and perspective scientific direction.

    The analysis of the last achievements and publications is produced, the decision of the examined problem is begun in which. At the analysis the basic questions of warning of collision of vessels are lighted up, the choice of situation of rapprochement of ship with a target from the great number of standard situations is thus considered, whereupon determination of strategy of divergence is produced, and also conception of flexible strategies of divergence is explored. Principles of locally-independent and external are considered management by vessels in the situation of dangerous rapprochement.

    It is shown that in a number of works the regions of impermissible values of parameters of motion of pair of vessels are offered, the scopes of which divide pair combinations of parameters of motion of vessels, as points of plane, the axes of which there are the chosen parameters, on possible and impermissible parts.

    Four parameters of motion of pair of vessels are considered in work, two from which are permanent, and remaining two parameters are examined, as variable quantities, and equalization which characterizes dependence between in-out parameters is offered. The indicated dependence represents a curve on the plane of in-out parameters and is the border of region of their impermissible values. For points belonging to this region, rapprochement of vessels is dangerous, and in the case when the chosen point are on the border of region, or out of her, that rapprochement of vessels is safe. Therefore for estimation of danger of situations of rapprochement of vessels the graphic reflection of region of impermissible values of in-out parameters in the system of coordinates of these parameters with possibility of indication of point with the initial values of parameters is offered, according to the regulations of which it is possible to judge about its belonging of region. A situation is considered, in which ships at dangerous rapprochement can not change the course, and warning their collision is possible only by the change of speeds. In this case speeds of vessels get out as in-out parameters, and the courses of vessels are unchanging. Equalizations of scopes of region for this case are resulted. It is shown that the scopes of regions of dangerous values of speeds are straight lines.

    Keywords: safety of navigation, warning of collision of vessels, regions of impermissible values of parameters of motion.

    References
    1. Мальцев А. С. Маневрирование судов при расхождении / Мальцев А.С. – Одесса: Морской тренажерный центр, 2002. – 208 с.
    2. Цымбал Н.Н. Гибкие стратегии расхождения судов / Цымбал Н.Н., Бурмака И.А., Тюпиков Е.Е. – Одесса: КП ОГТ, 2007. – 424 с.
    3. Булгаков А.Ю. Формализация основных характеристик управляемой динамической системы судов/ Булгаков А.Ю. // Судовождение. – 20013. – № 23. – С. 7-12.
    4. Бурмака И.А. Управление группы судов в ситуации опасного сближения / Бурмака И.А., Булгаков А.Ю. // Вестник Государственного университета морского и речного флота им.адмирала С. О. Макарова. Санкт-Петербург. – 2014. – выпуск 6 (28). – С. 9 – 13.
    5. Булгаков А.Ю. Маневр расхождения трех судов с изменением их курсов / Булгаков А.Ю., Алексейчук Б.М.// Проблеми техніки: Науково-виробничий журнал. – 2014. №1. – С. 75 – 81.
    6. Булгаков А.Ю. Использование опасной области курсов двух судов для выбора допустимого маневра расхождения/ Булгаков А.Ю.// Водный транспорт. – 2014. №2 (20). – С. 12 – 17.
    7. Бурмака И.А. Управление судами в ситуации опасного сближения / И.А Бурмака., Э.Н Пятаков., А.Ю. Булгаков – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), – 2016. – 585 с.
    8. Бурмака И.А. Экстренная стратегия расхождения при чрезмерном сближении судов / Бурмака И.А., Бурмака А.И., Бужбецкий Р.Ю. – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), 2014. – 202 с.
    9. Петриченко О.А. Оперативный способ определения параметров маневра расхождения судна. / Петриченко О.А.// Science and Education a New Dimension. Natural and Technical Sciences, VI(22), Issue: 186, 2018.- С. 68-71.
    Maltsev S. E. Information system for mooring of VLCC tanker to mono buoy

    DOI: 10.31653/2306-5761.29.219.134-141 | PDF

    Abstract

    The paper deals with the synthesis of a VLCC high-performance tanker control system when mooring to a mono buoy based on the use of decision support navigation devices in planning the trajectory and control over it to ensure trouble-free operation of a maritime operation. Based on the use of new methods of high-precision scenario planning of predetermined coordinates of motion by trajectory points by way of waypoints and taking into account the characteristics of ship management, a system for managing the process of performing a maritime mooring operation has been synthesized.

    The obtained results allow to improve the accuracy of planning and control of movement and to automate the process of preparation of a given algorithm for controlling the ship’s maneuvering and to perform the redevelopment in order to correct movement at deviations from the given coordinates.

    Developed methods and techniques for developing a predetermined algorithm for planning and operation of the ship’s management system, including curved sections of the path, can significantly improve the safety of navigation.

    The use of information about the pivot point and coordinate for planning coordinate of trajectory points which allows you to timely detect the onset of curvilinear motion and adjust the controls to move along the planned trajectory.

    Improvement of information support allows increasing the level of safety during the period of approach to mono buoy and mooring operations.

    The results can be used on ships to automatically schedule the mooring of a tanker to a mono buoy, as part of a pilot individual information device, and to develop a simulator to prepare navigators for mooring a tanker to a mono buoy.

    Keywords: planning scenario; trajectory points; pivot point; curvilinear motion; maritime mooring operations; VLCC tanker.

    References
    1. Алексишин В. Г. Обеспечение навигационной безопасности плавания. / В. Г. Алексишин, Л. А. Козырь, С. В. Симоненко. – Одесса: Феникс; -М.:ТрансЛит, 2009.-518 с.
    2. Соколенко В.И. Судовой план лоцманской проводки. / Соколенко В.И. // Суовождение: Сб. научн. Трудов ОНМА. Вып.20. –Одесса: «ИздатИнформ», 2011. – С. 209-220.
    3. Вильский Г.Б. Навигационная безопасность при лоцманской проводке судов/ Г.Б. Вильский, А.С. Мальцев, В.В. Бездольный, Е.И. Гончаров//Под ред. А. С. Мальцева, Г. Б. Вильского. – Одесса-Николаев: Феникс, 2007. – 456 с.
    4. Деревянко А. А.Особенности обеспечения маневренными характеристиками судов VLCC//Судовождение: Сб. научн. трудов/ ОНМА, Вып.25. –Одесса: «ИздатИнформ,2015. – С. 69-78.
    5. Мальцев А. С. Системы поддержки принятия решений по управлению движением судна. /А.С. Мальцев, А. П. Бень. –Херсон: ХГМА, 2017.–178 с.
    6. Recommendations for Equipment Employed in the Bow Mooring of Conventional Tankers at Single Point Moorings. / OCIMF / Fourth Edition May 2007 – С. 34.
    7. Мальцев А. С. Аналитический метод построения траектории маневрирования инверсным способом / А. С. Мальцев, Н. В. Ивановский // ОНМА. Судовождение. – Одесса, 2009. – Вып. 16. – С. 77-82.
    8. Мальцев А.С. Методологические основы маневрирования судов при сближении./ А.С. Мальцев, В.В. Голиков, И.В. Сафин, В.В. Мамонтов.// Одесса.: ОНМА, 2013. – 218 с.
    9. Мальцев С.Э. Полюс поворота и его учет при маневрировании морского судна: монография/ С. Э. Мальцев, О. Н. Товстокорый. //–Херсон: ХГМА, 2016. -124 с.

    Патент 98720 UA. МПК (2015.01) В63В 21/00 Система інформаційного забезпечення швартування танкера VLCC до моно буя./Деревянко А.А., Мальцев С.Е. Заявник Одеська національна морська академія. – № u2014 10883; заявлено 06.10.2014; опубліковано 12.05.2015, Бюл. № 9.

    Melnyk O. Problem statement and prospects for the development of oversized cargo transportaion in Ukraine

    DOI: 10.31653/2306-5761.29.219.142-153 | PDF

    Abstract

    The article deals with the state of research status of the problem of transportation of oversized and heavyweight cargoes in Ukraine, respectively the work of scientists concerning this problem analyzed. The characteristics of transportation of oversized cargo by water transport are given. Circumstances and conditions that characterize the status in the transport industry identified. The main unresolved problems in the transport sector of Ukraine generally classified and the process of transportation of oversized cargo particularly analyzed where the specific vision for solving the identified problems and overcoming the existing difficulties in the industry offered.

    Keywords: oversized and heavyweight cargoes, transportation, water transport.

    References
    1. Akimova, O.V. (2014). Rozrobka eksportno-importnoi skhemy orhanizatsii dostavky kontejneriv transportno-ekspedytors’kymy kompaniiamy [Development of export-import scheme for the organization of container delivery by freight forwarding companies]. Vostochno-Evropejskyj zhurnal peredovykh tekhnolohyj [East-European magazine of advanced technologies], 6(3), 4-10. doi: https://doi.org/10.18664/338.47:338.45.v0i62.133981.
    2. Vepryts’kyj, R. S. (2018.). Analiz ta otsinka obsiahiv tranzytnykh perevezen’ zaliznychnym transportom Ukrainy [Analysis and estimation of volumes of transit transportations by rail of Ukraine]. Visnyk ekonomiky transportu i promyslovosti [Bulletin of the Economy of Transport and Industry], 62, 53-63. doi: https://doi.org/10.18664/338.47:338.45.v0i62.133981.
    3. Dopira, I. (2014). Transportnyj kompleks iak vazhlyva skladova ekonomiky Ukrainy [Transport complex as an important component of the Ukrainian economy], Naukovyj visnyk Odes’koho natsional’noho ekonomichnoho universytetu [Scientific herald of National Economic University], 9, 86-89.
    4. Karas’, O. O. (2013). Zastosuvannia SVOT-analizu pry doslidzhenni rynku transportnykh posluh [Application of SWOT-analysis in the study of the market of transport services], Zbirnyk naukovykh prats’ Derzhavnoho ekonomiko-tekhnolohichnoho universytetu transportu. Ser.: Ekonomika i upravlinnia [Collection of scientific works of the State Economic-Technological University of Transport. Series: Economics and Management], 23-24, 30-37.
    5. Kotenko, A. M. (2014). Perevezennia nehabarytnykh i velykovahovykh vantazhiv v transportnykh systemakh [Transportation of oversized and heavy goods in transport systems], Zbirnyk naukovykh prats’ Ukrains’koi derzhavnoi akademii zaliznychnoho transport [Collection of scientific works of the Ukrainian State Academy of Railway Transport], 145, 50.
    6. Lyfar, V.V. (2017). Rozvytok transportnoi lohistyky v rehional’nij systemi obsluhovuvannia tovarnykh potokiv [Development of transport logistics in the regional system of service flow of goods], 4, 176-187. doi: 10.21272/mmi.2017.4-15.
    7. Lozhachevs’ka, O.M. (2002). Kharakterystyka transportnoi haluzi Ukrainy [Characteristics of the transport industry of Ukraine], Ekonomist, 10, 40-44.  
    8. Masliak, P.O. (2006). Ekonomichna i sotsial’na heohrafiia Ukrainy [Economic and social geography of Ukraine], Kyiv, Ukraine, Zodiak-EKO.
    9. Mel’nyk, O. V. (2015). Vnutrishnij vodnyj transport u svitovij systemi perevezen [Inland water transport in the world transport system], Vodnyj transport [Water transport] 2, рр.141-147.
    10. Ovchar, P. A. (2017). Teoretychni osnovy derzhavnoho rehuliuvannia avtotransportnoi diial’nost [Theoretical Basis of State Regulation of Motor Transport Activity], Visnyk Natsional’noho universytetu tsyvil’noho zakhystu Ukrainy. Seriia: Derzhavne upravlinnia [Bulletin of the National University of Civil Protection of Ukraine. Series: Public Administration], 2, doi: 10.5281/zenodo.1038890.
    11. Materialy nauk.-prakt. Konf [Materials of sciences-practice. Conf (2008.) Suchasni problemy ekonomichnoi bezpeky v rynkovykh umovakh [Modern problems of economic security in market conditions: materials of sciences-practice. conf.], Kyiv, Ukraine, NAU.
    12. Yanevych, V. Z. (2014). Doslidzhennia ta optymizatsiia protsesu perevezennia vantazhiv zaliznychnym transportom [Research and optimization of the process of transportation of goods by rail], Zbirnyk naukovykh prats’ Dnipropetrovs’koho natsional’noho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Сollection of scientific works of Dnipropetrovsk National Lazaryan University of Railway Transport of Ukraine], 7, 73-79. doi: https://doi.org/10.15802/tstt2014/35999.
    13. Research and markets www.researchandmarkets.com
    Omelchenko T. Yu. Design of process of divergence of vessels taking into account form of relative trajectory

    DOI: 10.31653/2306-5761.29.219.154-163 | PDF

    Abstract

    In work is specified, that the decline of accident rate of vessels is the major problem of providing of safety of navigation, it is thus marked that it is impermissible high level of accident rate by reason of collisions of vessels, that made necessity of development of effective measures on warning of their collisions, special in the straitened districts of sailing.

    Attention is accented on that development of methods of perfection of process of divergence of the drawn together vessels taking into account the relative form of trajectory of divergence and navigation dangers is actual and perspective scientific direction. The analysis of the last achievements and publications is produced, in which the decision of the examined problem is begun and produced the selection of parts of general issue unsolved before. At the analysis the basic questions of warning of collision of vessels are lighted up, conception of flexible strategies of divergence is explored, the choice of situation of rapprochement of ship with a target from the great number of standard situations is considered, whereupon determination of strategy of divergence is produced. The questions of forming of safe ship domains are considered, principles of locally-independent and external management by vessels in the situation of dangerous rapprochement, and also operative method of determination of parameters of maneuver of divergence of ship by the change of course.

    It is shown that for verification of method of choice of safe maneuver of divergence of operating ship with a target the change of course taking into account the realized form of relative trajectory of divergence and present navigation danger developed the imitation computer program which also contains the module of design of process of divergence of vessels with the expected parameters of maneuver, as a result it is possible to estimate correctness of the offered method of choice of safe maneuver of divergence of vessels.

    The results of imitation design of maneuvers of divergence of ship with a target are considered, expected by the imitation computer program for the chosen situation of dangerous rapprochement of ship with a target. A ship will realize the veritable trajectory of divergence by move to the left, thus the relative and veritable trajectories of divergence have identical forms. There is a navigation danger in the district of rapprochement, therefore a ship chooses the trajectory of divergence by deviation to the left, at which the course of target intersects on a bow. Correctness of method of choice of parameters of maneuver of divergence is confirmed.

    Keywords: safety of navigation, warning of collision of vessels, relative trajectory of divergence, imitation design.

    References
    1. Цымбал Н.Н. Гибкие стратегии расхождения судов / Цымбал Н.Н., Бурмака И.А., Тюпиков Е.Е. – Одесса: КП ОГТ, 2007. – 424 с.
    2. Мальцев А. С. Маневрирование судов при расхождении / Мальцев А.С. – Одесса: Морской тренажерный центр, 2002. – 208 с.
    3. Мальцев А. С. Учет маневренных характеристик для обеспечения безопасности плавания / Мальцев А. С. // Судостроение и ремонт. – 1989. – №5. – С. 29-31.
    4. Бурмака И.А. Управление судами в ситуации опасного сближения / И.А Бурмака., Э.Н Пятаков., А.Ю. Булгаков – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), – 2016. – 585 с.
    5. Бурмака И.А. Экстренная стратегия расхождения при чрезмерном сближении судов / Бурмака И.А., Бурмака А.И., Бужбецкий Р.Ю. – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), 2014. – 202 с.
    6. Петриченко О.А. Оперативный способ определения параметров маневра расхождения судна. / Петриченко О.А.// Science and Education a New Dimension. Natural and Technical Sciences, VI (22), Issue: 186, 2018.- С. 68-71.
    7. Омельченко Т.Ю. Отображение траектории расхождения судна уклонением вправо в множество относительных траекторий / Омельченко Т.Ю., Пятаков Э.Н., Тюпиков Е.Е. // East European Science Journal, №11 (27), 2017, part- С. 58-69.
    8. Пятаков Э.Н. Выбор стратегии расхождения при локально-независимом управлении судов в ситуации опасного сближения / Э.Н. Пятаков,
      С.С. Пасечнюк, Т.Ю. Омельченко // Science and Education a New Dimension. Natural and Technical Sciences, V(14), Issue: 132, 2017.- С. 97 – 101.
    Pipchenko O., Pernykoza V., Kazak Y., Burchak O. Simulation of incidents during deck officers training: collision between OSV and bulk carrier

    DOI: 10.31653/2306-5761.29.219.164-172 | PDF

    Abstract

    Continuous professional development is one of the key elements that contributes to maintaining an adequate level of safety in high-risk industries such as shipping. At the same time, about half of all major асcidents in this industry are related to navigational incidents: collisions, contacts with a pier, and groundings. Each major accident is preceded by the so-called “chain of errors.” Early recognition and “extraction” of links from the “chain” reduces the likelihood of a navigational accident. However, navigational process participants should be able to recognize a dangerously developing situation and take timely preventive measures. Thus, recognizing a dangerous situation is a skill that needs to be developed. One of the effective methods for developing the above skill is to study previously occurred emergency situations.

    This article highlights the subject of deck officers training based on navigation incidents. In particular, the collision of the tug “Neftegaz-67” and the bulk carrier “Yao Hai” was recreated on a navigation simulator and suggested to deck officers in various versions without a preliminary description of the circumstances of the accident or warning that anything unusual could happen in the exercise. Versions of tasks: the trainee controls the tug, all other vessels move along a given trajectory; the trainee controls the bulk carrier, the tug makes a sharp maneuver to the left immediately before the turn; trainees operate a tug and bulk carrier in multi-player mode. As the post-analysis of exercises showed, the largest number of collisions occurred in the second version, where the trainee controls the bulk carrier. At the same time, there was a clear correlation between the number of accidents and the experience of the trainees.

    Keywords: vessel maneuvering, deck officers training, learning from incidents.

    References
    1. Bridge watchkeeping and collision avoidance. Loss prevention bulletin. Japan P&I club. 34, 2015 – 10 p.
    2. COLREGS – International Regulations for Preventing Collisions at Sea. Consolidated Edition, IMO: 2003.
    3. EMSA Annual Overview of Marine Casualties and Incidents 2018. http://www.emsa.europa.eu/news-a-press-centre/external-news/item/3406-an-nual-overview-of-marine-casualties-and-incidents-2018.html Accessed 20 Nov 2019.
    4. Gilbert WU Lee. Managing collision avoidance at sea. A practical guide / G.WU Lee, C. J. Parker. – London, England: Nautical Institute, 2007 – 181 p.
    5. IMO MSC 76/23, “Resolution MSC.137 (76), Standards for Ship Manoeuvrability,” Report of the Maritime Safety Committee on Its Seventy-Sixth Session-Annex 6, 2002.
    6. MAISSPB Report of Investigation into the Collision between China Registered Bulk Carrier Yao Hai and Ukraine Registered Supply Tug Neftegaz-67 in position 22˚ 20.7’N, 114˚ 00.1’E at 21:13 on 22 March 2008 [Електронний ресурс] / MAISSPB // – 2008. – Режим доступу до ресурсу: https://madden-maritime.com/wp-content/uploads/2016/09/hk-bulker-and-supply-vessel-collision-oct-2009.pdf.
    7. Pipchenko О., Tsymbal M., Shevchenko V. 2018 Recommendations for Training of Crews Working on Diesel-Electric Vessels Equipped with Azimuth Thrusters. TRANSNAV – International journal on marine navigation and safety of sea transportation. 12, Issue 3, Gdynia Maritime University, Faculty of Navigation.
    8. Swift A. J., Bailey T. J. Bridge Team Management. 2nd ed. Nautical Institute, London, UK, 2004 – 85 p.
    9. Ермаков С. В. Математическая модель маневра последнего момента с пассивным фактором / Вестник ГУ МРФ №2(30), 2015 – C. 41-48.
    10. Пипченко А. Д. Анализ аварийности мирового флота 2005-2015. Судовождение: Сб. научн. трудов ОНМА, Вып. 27. – Одесса: ИздатИнформ, 2017. – C. 159-168.
    11. Пипченко А. Д. Определение дистанции опасного сближения при расхождении маневром собственного судна // Вестник Одесского национального морского университета 2 (51), Одесса: ОНМУ Вып. 2(51), 2017. – C. 156-164.
    12. Пипченко А. Д. Формальная оценка безопасности при выполнении задач судна. Судовождение: Сб. научн. трудов ОНМА, Вып. 23. – Одесса: ИздатИнформ, 2013. – C. 114-121.
    13. Montewka J. A method for assessing a causation factor for a geometrical MDTC model for ship-ship collision probability estimation / J. Montewka, F. Goerlandt, H. Lammi & P. Kujala // Proceedings of TransNav, vol. 5, №3, 2011.
    Pjatakov V. E. Imitation design of the combined manoeuvre of divergence of ship with two targets

    DOI: 10.31653/2306-5761.29.219.173-183 | PDF

    Abstract

    In work is specified, that presently the accident rate of vessels in the straitened waters by reason of collisions remains at high level. In the intensive districts of sailing quite often there are more than two vessels to the situation of simultaneous dangerous rapprochement, when implementation of maneuver of divergence in obedience to the CollReg requirements frequently becomes impossible.

    The analysis of the last achievements and publications is produced, in which the decision of the examined problem is begun and produced the selection of parts of general issue unsolved before. At the analysis the basic questions of warning of collision of vessels are lighted up, conception of flexible strategies of divergence is explored, the choice of situation of rapprochement of ship with a target from the great number of standard situations is considered, whereupon determination of strategy of divergence is produced. Principles of locally-independent and external are considered management by vessels in the situation of dangerous rapprochement.

    It is shown that the method of choice of the combined maneuvers of divergence of ship with two target before was offered by the change of course and his active braking. For verification of correctness of the offered method the computer program containing the module was developed, by which playing of the chosen maneuver of divergence is produced and is concluded about correctness of the offered method of determination of maneuver of divergence, thus for rotatory motion of vessels a model with permanent angular speed is chosen.

    As an example correctness of the offered procedure of choice of maneuver of divergence by the change of course of ship with subsequent diminishment of speed of ship is considered by the active braking. The region of possible maneuvers of divergence by the change of course of ship with subsequent diminishment of his speed by the active braking was formed, which the choice of optimum maneuver of divergence with pointing of course and speed of deviation, and also time of beginning of braking was produced by.

    The results of imitation design of process of divergence of ship with two dangerous targets are resulted. It is shown that on the first stage of process of divergence by deviation from the first target by the change of course distance of the shortest rapprochement is equal maximum – possible distance. Beginning of the active braking of ship for the decline of his speed is produced in the indicated moment of time that is the second stage of process of divergence of ship, during which distance of the shortest rapprochement of ship with the second target is equal to maximum distance of rapprochement.

    Thus, the imitation design of the combined maneuver of divergence of ship with two targets showed correctness of method of determination of parameters of the considered maneuver of divergence.

    Keywords: safety of navigation, warning of collisions, combined maneuver of divergence.

    References
    1. Куликов А. М. Оптимальное управление расхождением судов / А. М. Куликов, В. В. Поддубный // Судостроение. – 1984. – № 12. – С. 22-24.
    2. Павлов В.В. Некоторые вопросы алгоритмизации выбора маневра в ситуациях расхождения судов/ В.В. Павлов, Н.И. Сеньшин // Кибернетика и вычислительная техника. – 1985. – № 68. – C. 43-45.
    3. Бурмака И.А. Управление судами в ситуации опасного сближения / И.А Бурмака., Э.Н Пятаков., А.Ю. Булгаков – LAP LAMBERT Academic Publishing, – Саарбрюккен (Германия), – 2016. – 585 с.
    4. Цымбал Н.Н. Гибкие стратегии расхождения судов / Н.Н. Цымбал, И.А. Бурмака, Е.Е. Тюпиков. – Одесса: КП ОГТ, 2007. – 424 с.
    5. Statheros Thomas. Autonomous ship collision avoidance navigation concepts, technologies and techniques / Statheros Thomas, Howells Gareth, McDonald-Maier Klaus. // J. Navig. 61, № 1, p. 129-142.
    6. Бурмака И.А. Экстренная стратегия расхождения при чрезмерном сближении судов / Бурмака И.А., Бурмака А. И., Бужбецкий Р.Ю. – LAP LAMBERT Academic Publishing, 2014. – 202 с.
    7. Пятаков Э.Н. Взаимодействие судов при расхождении для предупреждения столкновения / Пятаков Э.Н., Бужбецкий Р.Ю., Бурмака И.А., Булгаков А.Ю. – Херсон: Гринь Д.С., 2015. – 312 с.
    8. Сафин И.В. Выбор оптимального маневра расхождения / И.В. Сафин // Автоматизация судовых технических средств. – №7. – 2002. – С. 115-120.
    9. Бурмака И.А. Результаты имитационного моделирования процесса расхождения судов с учетом их динамики / Бурмака И.А. // Судовождение. – 2005. – №10. – С. 21 – 25.
    10. Петриченко Е.А. Вывод условия существования множества допустимых маневров расхождения с учетом навигационных опасностей / Петриченко Е.А. // Судовождение. – 2003. – №.6. – С. 103 – 107.
    11. Пятаков В.Э. Анализ области допустимых комбинированных маневров расхождения судна с двумя целями изменением курса и его активным торможением. /Пятаков В.Э.// Science and Education a New Dimension. Natural and Technical Sciences, VI(22), Issue: 186, 2018.- С. 53 – 58.
    12. Демин С.И. Торможение судна / С. И. Демин– М.: Транспорт, 1975. – 81с.
    Revenko V. Yu Use of ship radars for effective discovery of dangerous atmospheric formations on way of ship

    DOI: 10.31653/2306-5761.29.219.184-191 | PDF

    Abstract

    Atmospheric fronts and cyclones are accompanied by the thundershower sinking, thunderstorms, gusty winds defiant strong agitation of marine surface. Such atmospheric educations have influence on the radioconduct of navigation objects, that results in the decline of safety of navigator. The special danger is presented by a storm cumulo-nimbus. The area of mesocyclone is often preceded a cumulo-nimbus cloud with turbo speed of circulation of air anticlockwise with sizes to fifteen kilometres. Circulation begins at an altitude of 6-7 km and develops rapidly towards the water surface. The mesoscale zones of fallouts, related to the cyclone, have the appearance of long stripes breadthways an about 100 km the Annual amount of fallouts in tropical zones (in the district of Singapore) arrives at a to 2413 mm with a maximum in January (288 mm). High spatial changeability of intensity and amount of fallouts determines natural dispersion of descriptions of fallouts, that causes the large errors of their weather prognosis. In the zones of active atmospheric fronts a navigator is related to the certain danger of negative influence of long-living cumulo-nimbus that does not reveal meteorological companions. In connection with impossibility of a brief weather prognosis of origin and development of violent weathers there is a necessity for the use ship radar, that in real time allows to discover in the distance many ten of kilometres development of mesocyclone, to measure his speed and direction of motion, i.e. to carry out storm detection and short-term weather forecast on the way of ship. However to present tense for navigators is absent radio-location criteria of storm alert, and at ship radar automatic recognition of the dangerous phenomena on the way of ship.

    By perspective direction in perfection ship radar there is an increase of their informing radiometeorological methods, that allow to use ship radar not only for the supervision of navigation objects on the way of ship but also for stormy notification about the dangerous hydrometeorological phenomena, measuring of falling out fallouts and supershort-term weather forecast. The radio-location maps of prognosis of violent weathers directionally ship with the rate of updating 10-15 minutes will act on the personal computer of shipmaster in the coloured kind. The zone of supervision of ship radio-locator will be entered by a cumulo-nimbus with a mesocyclonic area and zones of thundershower fallouts, gusty winds and thunderstorms. The receipt of radio meteorological information is based on radio-location descriptions of meteorological formations, the reflected of atmospheric educations, effective area of reverse dispersion, coefficient of weakening of radio waves behave to that.

    By basis for the use of radio-location descriptions of atmospheric educations in informing ship radar there is basic equalization of radio-location, relating power of echo-signal from atmospheric educations with informative parameters radar taking into account relatively large stability of her basic parameters (meteorological potential).At a supervision ship radar the dangerous atmospheric phenomena the effective radius of their discovery, determined by distance, on that the dangerous phenomenon reveals ship radar  with probability no less than 95 %. There are limitations, reducing efficiency of radio-location supervision of dangerous atmospheric educations, is entered. It is high local objects (hills, towers, mountains etc.) that create the corners of closing of their discovery. However, this limitation inherently only in off-shore districts and at a port call.

    The analysis of equalization of radio-location and his informing are considered for ship radar, and also the tasks decided by means of ship radar on authentication of the dangerous atmospheric phenomena on the way of ship.

    Key words: ship radar, information content, radar parameters, atmospheric objects, detection efficiency.

    References
    1. Степаненко В.Д. Радиолокация в метеорологии / В.Д. Степаненко. – Л.: Гидрометеоиздат, 1966. – 350 с.
    2. Довиак Р., Зрнич Д. Доплеровские радиолокаторы и метеорологические наблюдения. – Л.: Гидрометеоиздат, 1988. – 511 с.
    3. Рыжков А.В. Характеристики метеорологических РЛС / А.В. Рыжков // «Зарубежная радиоэлектроника», 1993. – № 4. – С.29-34.
    4. Кольер К.Г. Создание сети метеорологических радиолокаторов в Европе – проект COST-73 Комиссии европейского сообщества. – Бюллетень ВМО, 1991. – т. 40. – № 4. – с. 445–451.
    5. Принципы построения автоматизированных систем метеорологического обеспечения авиации / Под ред. Г. Г. Щукина Л.: Гидрометеоиздат, 1991. -371 с.
    6. Билетов М.В. Радиолокационное распознавание кучево-дождевых облаков, адаптивное к условиям их образования. В кн.: Радиолокационная метеорология / М. В. Билетов, Г. Б. Брылев, С. В. Соломатин. – Л.: Гидрометеоиздат, 1989. С. 68— 81.
    Revenko V. Yu. Statistical radio-location characteristics of atmospheric formations and objects observed on their background

    DOI: 10.31653/2306-5761.29.219.192-200 | PDF

    Abstract

    Ship’s radar systems operating at wavelengths of 3 cm and 10 cm allow, along with remote observation of navigation objects, to receive information on the state of the atmosphere, the sea and the earth’s surface. However, ship radars do not receive such information, which affects the safety of navigation. The atmosphere and atmospheric formations, as the environment in which radar signals propagate, as well as the underlying surface (sea water and land), on the one hand, significantly affect the effectiveness of radar observation of navigation objects in the vessel’s path, and on the other hand, radar information on the state of the atmosphere and  the underlying surface allows the crew to make the right decisions in a timely manner when hazardous meteorological and oceanological phenomena occur.

    Due to the fact that atmospheric formations are a radar object, consisting of elementary reflectors that have, in general, non-spherical shape and chaotic movement in space, they create background echo signals on the indicators that prevent radar observation of navigation objects, and at the output of the ship’s radar receiver, the echo signals of fluctuating and atmospheric objects are not separated and are not separately observed.  To assess atmospheric and fluctuating objects, knowledge of their statistical radar characteristics is necessary.

    The theoretical basis of this estimate may be the correlation functions of radar signals reflected from atmospheric formations and the underlying surface.  Considering the fact that the speeds of individual reflectors and their movements are assumed to be stationary random processes.

    The article discusses the correlation functions of these objects, which will later be used to obtain their radar information and its presentation on the ship’s radar indicators and the ship’s computer display.

    Keywords: navigation, fluctuating and atmospheric objects, correlation functions, echo-signals, linear and quadratic detectors, receiver noise.

    References
    1. Билетов М.В. Радиометеорология. / М.В. Билетов, В. П. Кузьменко, Н. Ф. Павлов, Н. В. Цивенко. – М.: Военное издательство, 1984. –  208 с.
    2. Павлов Н.Ф. Аэрология, радиометеорология и техника безопасности / Н.Ф. Павлов. – Л.: Гидрометеоиздат, 1960. – 431 с.
    3. Канарейкин Д.Б. Поляризация радиолокационных сигналов / Д.Б. Канарейкин, Н.Ф. Павлов, В.А. Потехин. – М.: Советское радио, 1966. – 440с.
    Solovey O. S. Control of stability parameters on specialized vessels during cargo operations with heavy and oversized cargoes

    DOI: 10.31653/2306-5761.29.219.201-210 | PDF

    Abstract

    Purpose. This article describes how to improve the methods to control stability parameters during ship`s cargo operations with heavy and oversized cargoes on specialized vessels (such as Heavy Lift).

    Method. The analysis of theoretical and practical developments devoted to solving the problem of ensuring the safety of cargo operations on the ships of type Heavy Lift is given. The characteristics and disadvantages of the existing most functional integrated software tools of various manufacturers (Germany, the Netherlands) are highlighted.

    Results. Key areas of research in this area are identified. The control parameters that affect the stability of the vessel and, as a consequence, the safety of ship cargo operations are presented, classified and described. It is shown that the solution to the problem of ensuring the efficiency of managerial decision-making can be achieved by using the decision support system (DSS) for managing dynamic parameters that are controlled when loading heavy and oversized cargoes by the ship cranes. When creating specialized DSSs, it is necessary to form a knowledge base on loading / unloading procedures, already tested on real examples in the practice of maritime shipping, and using multi-criteria optimization methods to solve the problems of choosing the best control actions for a particular loading / unloading process.

    Scientific novelty. Author suggested the approaches to improve standard procedure of the loading operations on such vessels by using decision support system. This system executes monitoring and management of a number of the vessel characteristics: quantity of ballast and its distribution in ballast tanks, heeling angle, metacentric height, hook load, boom outreach, wind speed and rolling period.

    Practical importance. Use of the proposed method for the creating decision support systems during cargo operations with heavy and oversized cargoes on specialized vessels will allow, with exciting equipment, to reduce risk, increase the safety of these operations, decrease economic costs by reducing the time of cargo operations.

    Keywords: hoisting angle, decision support system, heavy lift cargo, heavy lift vessels.

    References
    1. User Manual for the loading computer COLOS (Computer-Loading-System).
    2. Loading Computer System seacos MACS3 Version NET 1.1 Crane Operation Module Manual / INTERSCHALT maritime systems AG – Wilhelmstrasse 7-9 – 24937 Flensburg.
    3. LOCOPIAS LOADING COMPUTER SOFTWARE MANUAL / SARC BV Eikenlaan 3, 1406 PK Bussum, The Netherlands.
    4. BBC Guideline. Safe solutions for project cargo operations. — Leer: BBC Chartering and Logistic GmbH&Co.KG, 2009. — 76 p.
    5. Ершов А.А. Контроль остойчивости и посадки судна при погрузке и выгрузке. – Санкт-Петербург, Издательство ГМА им. адм. С. О. Макарова, 2002. –60 с.
    Torskiy V. G., Topalov V. P., Torskiy V. V. The ship accidents are consequence of navigators mistakes

    DOI: 10.31653/2306-5761.29.219.211-229 | PDF

    Abstract

    Till quite recently in the centre of attention in shipping industry was improvement of ships construction, automation production processes on board, reliable navigation systems and employment, new means of communication. Now the technical devices, systems and mechanisms of modern ships utilize scientific and technologies achievements and are very reliable.

    The main purpose of these actions was ensuring the safety and effectiveness of ships exploitation. But as testify sea accident statistics the final result of these actions was unsatisfied. The reliable construction and equipment of the ships are not enough for safety navigation. Accident rate in shipping industry was very high as before. In most cases (70-80%) of dangerous situation the cause of incidents were navigators mistakes.

    The ship is a human system and personnel mistakes promote to create near miss and accident. Now the main tendency in navigation is employment of special integrate systems. They include various devices and intend for information ensuring of watch officer. The personnel on the bridge use this complex for acceptance decisions and control motion of the ship. But abundance or shortage of navigation information are negative factors for the aforesaid process. They form some difficulties for decision making especially in complicated situations. The result of this condition may be officers mistakes during the choice mode of actions. It is establish that the personnel mistakes on board happen when the seaman abilities are lower than level as required for decision the task.

    Usually the watch officer on the bridge is under influence total combination of different factors. They include favorable factors which react unfavorable upon his abilities. Obviously the knowledge of this factors is necessary for decrease the mistakes and incorrect actions officer on the bridge. It is evident, that working out recommendations for rule out the possibility of such mistakes, will increase the safety of shipping.

    Keywords: mistakes, accidents, active factors, safety.

    References
    1. Ch. Kuo. Safety Management and its Maritime Application — Nautical Institute, London, 2007, 288 р.
    2. Crowch, Navigation the Human Element. MLB Publishing, Kent, UK, 2013, 233 р.
    3. Ahvenjarvi S.Poor Monitoring of the Navigation and Steering Equipment in creases the Reaction Time in Fault Situations, Oct.2006. The International Association of Maritime Universities.
    4. Hadnett E. A. Bridge too Far, «Seaways», Jan. 2008.
    5. Толковый словарь русского языка: 30000 слов и фразеологических выражений/Ожегов С. И., Шведова Н.Ю. PAH, Институт русского языка им. В.В. Виноградова -4-е. изд. доп.- М.: Азбуковник, 2015 -999 с.
    6. Guidelines for Formal Safety Assessment (FSA) for use in the IMO Rulemaking process (MSC), Circ 1023, April 2002.
    7. Международный Кодекс по расследованию аварий и инцидентов на море (Code for the Investigation of Maritime Casualties and Incidents), принят на 20-й Ассамблее ИМО в 1997 г. (Рез. А 849 (20)).
    Fusar I. Yu. Verification of statistical hypotheses of distributing of errors of measuring of bearing and distance

    DOI: 10.31653/2306-5761.29.219.230-236 | PDF

    Abstract

    It is indicated, that in last ten years the conducted model supervisions set the fact of distributing of errors of the navigation measuring not only on a normal law and laws with the “made heavier tails” were offered, that caused the necessity of verification of hypothesis about possibility of distributing of error of measuring on alternative laws by experimental information.

    It is shown that during the trip of ship the model supervisions were conducted, the results of which are resulted in the article. With the purpose of verification of possibility of application of alternative laws for description of distributing of errors of measuring of navigation parameters the model supervisions were conducted in the real external environments. For forming of initial selections of errors of measuring of navigation parameters the series of measuring of navigation parameters were produced by an amount more than 100 measuring.  Measuring of navigation parameters were produced on the stand of ship, thus by radar distance and bearing on an immobile reference point was measured.

    During a trip 4 series of measuring of navigation parameters were got, each of which in an aggregate represented the selection of errors. It is shown that dispersion and fourth central moment of errors settled accounts for every selection.

    On every selection a histogram was built and verification of statistical hypotheses is produced, which the degree of consent of statistical material of selection with orthogonal decomposition of closeness of probability distribution of errors of measuring with one member was determined in the process of. 

    The expected values are represented criterion of the Pyrson consent for each of four selections. It is set that the got values of criterion of the Pyrson consent confirm legitimacy of the use of orthogonal decomposition of closeness of distributing of errors of measuring with one member.

    Keywords: verification of static hypotheses, orthogonal decomposition of closeness, criterion of the Pyrson consent.

    References
    1. Астайкин Д.В. Оценка точности позиции судна при наличии случайных погрешностей навигационных измерений / Астайкин Д.В. // Проблеми техніки: Науково-виробничий журнал. – 2014. № 4. – С. 147 – 152.
    2. Астайкин Д.В. Аналитическое выражение функции распределения случайных величин смешанных законов/ Астайкин Д.В. // Водный транспорт. – 2014. №2 (20).– С. 6 – 11.
    3. Monteiro Luis. What is the accuracy of DGPS? / Sardinia Monteiro Luis, Moore Terry, Hill Chris. // J. Navig. 58, № 2, p. 207 – 225.
    4. Hsu D. A. An analysis of error distribution in na vigation / Hsu D. A. // The Journal of Navigation. – Vol. 32.- № 3. – P. 426 – 429.
    5. Мельник Е.Ф. Приближенное описание смешанных распределений погрешностей навигационных измерений / Мельник Е.Ф. // Автоматизация судовых технических средств: науч. –техн. сб. – 2002. – Вып. 7.- Одесса: ОГМА. – С. 96 – 100.
    6. Кондрашихин В.Т. Определение места судна / Кондрашихин В.Т. – М.: Транспорт, 1989. – 230 с.
    7. Мудров В.М. Методы обработки измерений / Мудров В.М., Кушко В.Л. – М.: Советское радио, 1976. 192 с.
    8. Степаненко В.В. Эффективность оценки параметров ситуации опасного сближения судов / Степаненко В.В. // Судовождение: Сб. науч. трудов / ОГМА. – Вып. 2 – Одесса: Латстар, 2000. – С. 201 – 209.
    9. Вентцель Е.С. Теория вероятностей/ Е.С. Вентцель – М.: Государственное издательство физико-математической литературы, 1962. – 564 с.
    Tsimbal M. N. Forming of tensor of load of containership in the case of conducting of cargo operations in a few ports

    DOI: 10.31653/2306-5761.29.219.237-243 | PDF

    Abstract

    In work is specified, that the loading of containership with the subsequent unloading in a few ports requires to place a loading taking into account the sequence of ports of unloading, with providing of free access to necessary parties of loading, and also the terms of accordance of the transient states of loading to the requirements of seaworthiness of ship must be executed. During every transition between successive ports the parameters of stability and durability of ship must be in possible limits, and nascent forces of inertia of tossing must be in possible limits.

    The trip of ship is considered, in which it calls at four ports, thus in the first and second ports a ship adopts a loading for unloading in the third and fourth ports, and after unloading in the third port adopts yet party of loading for fourth port. The loading of ship in the first port is characterized by party of loading for the third port, by party of loading for fourth port, ship supplies, ballast and their tensor of loading.

    It is shown that after completion of cargo operations in the first port tensor of loading must provide the possible nautical state and value of forces of inertia of tossing in possible limits. The reception of loading for the third port and loading for fourth port proceeds in the second port.  Because unloading of part of loading is foreseen in the third port, the loading of ship in the second port must foresee free access to the unloading parties. In the third port after unloading is adopted party of loading for fourth port.  It is specified on that tensor of loading can have permanent and variable constituents. In examined case a permanent constituent for all three tensors of loading is determined by party of loading, which is loading in the first port for unloading in fourth port, and rests of each of tensors are variable constituents, for which analytical expressions are got in the article.

    It is shown that for forming of tensor of loading of ship the following operations are used: determination of permanent constituent of tensor of loading, addition of initial tensor, inheritance of tensors, when second one tensor includes, and substitution of constituents of tensor. Thus forming of first tensor is produced with the use of operation of addition of permanent constituent, second tensor is got the inheritance of first tensor and addition of variable constituents, and for third tensor  operation of substitution in second tensor is used.

    Keywords: nautical safety, loading of containership, tensor of loading, requirement to forming of tensor.

    References
    1. Сизов В.Г. Теория корабля. – Одесса: Феникс, 2003. – 282 с.
    2. RO-RO ship/ferry with buoyancy tanks to prevent capsizing/ Заявка 2264665 Великобритания МКИ6 В 63 В 43/12 / Shatawy Ahmed Ahmed El. – № 9422061.3; Заявл. 2.11.94; Опубл. 8.5.96; НКИ В7А.
    3. Kulesh Victor A. Computer investigation of construction reliability / Kulesh Victor A. // Proc. 6th Offshore and Polar Eng. Conf., Los Angeles, Calif., May 26-31, 1996. Vol. 4. – Golden (Golo), 1996. – p. 395-401.
    4. Xia Jinzhu. A dynamic model for roll motion of ships due to flooding / Xia Jinzhu, Jensen Jorgen, Pedersen Preben Terndrup // Schiffstechnik. – 1999. – 46, № 4. –Р. 208-216.
    5. Wan Zheng. Estimation of ultimate strength of ship`s hull girders. / Wan Zheng, He Fu. // Ship Mech. – 2003. – 7, № 3. – Р. 58-67.
    6. Васьков Ю.Ю. Некоторые вопросы оптимизации грузовых операций навалочных судов / Ю.Ю. Васьков // Судовождение. – № 6. – 2003. – С. 40 – 45.
    7. Чепок А.О. Разработка процедуры отображения укладки генерального груза в трюмах судна / А.О. Чепок // Судовождение: Сб. научн. трудов / ОНМА, Вып. 20. – Одесса: «ИздатИнформ», 2011. – C. 243–246.
    8. Simonovich Milivoje. The correlation of ship hull form and her static stability diagram./ Simonovich Milivoje, Sizov Victor G, Vorobjov Yuri L. // 21 Jugosloven. kongr. teor. i primenjene meh., Nis. 29 maj – 3 jun. – 1995. – Р. 167-173.
    9. Miller Lutz. Advanced calculation techniques for ship structural design./ Miller Lutz.// Germ. Maritime Ind. J. – 19 – 8, Spec. Issue. – Р. 37 – 40.
    10. Власенко Е.А. Допустимая загрузка контейнеровоза / Е.А. Власенко //Science and Education a New Dimension. Natural and Technical Sciences, VI(22), Issue: 186, 2018.- С. 87 – 96.